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Abstract. Wind power is a key pillar in efforts to decarbonise energy production. However, variability in 

wind speed and resultant wind turbine power generation poses a challenge for power grid integration. Digital 

Twin (DT) technology provides intelligent service systems, combining real-time monitoring, predictive 

capabilities and communication technologies. Current DT research for wind turbine power generation has 

focused on providing wind speed and power generation predictions reliant on Supervisory Control and Data 

Acquisition (SCADA) sensors, with predictions often limited to the timeframe of datasets. This research looks 

to expand on this, utilising a novel framework for an intelligent DT system powered by k-Nearest Neighbour 

(kNN) regression models to upscale live wind speed forecasts to higher wind turbine hub-height and then 

forecast power generation. As there is no live link to a wind turbine, the framework is referred to as a 

“Simulated Digital Twin” (SimTwin). 2019-2020 SCADA and wind speed data are used to evaluate this, 

demonstrating that the method provides suitable predictions. Furthermore, full deployment of the SimTwin 

framework is demonstrated using live wind speed forecasts. This may prove useful for operators by reducing 

reliance on SCADA systems and provides a research and development tool where live data is limited. 

1 Introduction  

Wind power is of particular interest in efforts to reduce 

greenhouse gas emissions [1] given its technological 

readiness, relatively low environmental footprint, and 

abundant availability [2]. Electricity is generated via the 

conversion of kinetic energy contained within the wind, 

governed by the wind power equation [3]: 

                          P=0.5CPρAV
3                                (1) 

Where P is power generated, CP  is a wind turbine's 

power coefficient, ρ is air density, A the rotor wind-swept 

area, and V is wind speed. 

Given the fluctuating nature of the wind [4], wind 

turbine power output can be highly variable. This 

variability and the resultant difficulty in forecasting future 

power generation pose several challenges in power grid 

integration whilst ensuring stability [5]. This has led to a 

number of proposed solutions including electrical 

interconnectors [6], energy storage systems [7] and 

improved demand prediction [8]. 

Another potential mitigating measure is predicting 

wind turbine power generation. This allows better wind 

farm [9] and grid network management, reducing the need 

for generation reserves [5], as well as enabling other 

solutions such hydrogen energy storage [10]. Given that 

power generation is dependent on the wind speed cubed, 

this is frequently seen as the most important, and therefore 

the most used, input parameter for calculating power 

generation [11]. Manufacture power curves provide one 

method of doing so, detailing anticipated power output for 

a given wind speed. However, these can be overly 

optimistic and are often based on ideal conditions [12]. 

Supervisory Control Data Acquisition (SCADA) is 

commonly used in wind energy [13], providing wind 

turbines, wind farms, and associated equipment the ability 

to report their operational status [14]. Solutions using 

SCADA have become increasingly popular in fault 

diagnosis and prediction in wind turbines [15, 16, 17]. 

SCADA often details power output, wind speed, and other 

associated metrics, allowing its use for power generation 

predictions. 

SCADA data is typically recorded at 10-minute 

intervals and provides a number of potentially useful 

measurements including wind speed, wind direction, 

power generation, voltages and component temperatures 

[18] making it ideal for data-driven methods utilising 

machine learning. These have the benefit of not requiring 

domain knowledge, with the potential for model 

improvement over time [19]. Additionally, the use of 

large datasets allows many different aspects to be 

considered [20], providing a good way to discover 

complex relations between data. However, it may be 

difficult to predict extreme conditions due to limitations 

in observations and whilst correlation may be determined, 

this will not give causality for what occurs [19]. 
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Given the availability of SCADA datasets, 

numerous publications have undertaken wind turbine 

power generation-related research making use of this 

resource. Lin et al. [21] utilised isolation forest and deep 

learning techniques alongside high-frequency SCADA 

data to derive an improved technique for outlier detection, 

improving the accuracy of power generation predictions. 

Delago and Fahim [22] devised a Long Short-Term 

Memory (LSTM) powered data analysis framework, 

capable of predicting and visualising SCADA data and 

associated power generation prediction.  

An important factor in the prediction of energy 

generation from a wind turbine is knowledge of forecasted 

wind speed, with a number of machine learning 

techniques also at the forefront of this. Lv and Wang [23] 

utilised deep learning within a newly proposed combined 

model to forecast wind speed which followed a 

“decomposition-optimisation-forecasting” principle. Hur 

[24] developed a 2-stage method for short-term wind 

speed prediction utilising an extended Kalman filter for 

estimation, with a combination of extrapolation and a 

double-layer perceptron (DLP) feedforward neural 

network for prediction. 

Whilst methods such as those outlined above have 

seen successful academic implementation, it has been 

noted that these can often be overly complicated [25] 

increasing the difficulty of real-world deployment and 

use. As such, this has inspired research using simpler 

methods of wind speed and power generation. k-nearest 

neighbour (kNN) methods have been shown to be 

successful, producing robust wind speed and power 

generation predictions [9, 25], with results achievable that 

are comparable to more intensive methods [26].  

A wide range of definitions as to what constitutes a 

DT have arisen, spurring attempts to consolidate 

definitions and better specify what constitutes a DT [27, 

28, 29]. These suggest that at its most basic form, a DT 

consists of a physical asset, a virtual model of the asset, 

and a bidirectional link between them. This link is often 

considered “live”, providing real-time updates to the 

model, as well as enabling changes to the asset as a result 

of changes in the model. These changes vary from direct 

actions undertaken by the model to indirect actions 

resulting from operator decisions.  

DTs provide increased integration between physical 

and virtual spaces by combining DTs with sensors, 

machine learning and Internet of Things (IoT)-based 

technologies [30]. DT technology offers several benefits 

including remote monitoring and operations from 

anywhere at any time [31], access to real-time monitoring 

data useful for decision-making [28], and the provision of 

continuously updating predictions of the future state of an 

asset [27]. These allow for improved decision-making and 

planning [27], optimisation of activities [32] and 

automation [31].  

The use of DTs in the wind energy sector has seen 

increasing popularity. Numerous frameworks have been 

proposed, particularly for operations and maintenance 

purposes, for both onshore and offshore wind turbines 

[33, 34, 35]. 

However, there has been limited research regarding 

power generation-focused DTs. Fahim et al. [9] proposed 

a 5G DT platform powered by Microsoft Azure 

infrastructure. This looked to provide a framework for 

real-time monitoring and prediction of power generation, 

claiming to be the first to do so. This was tested utilising 

SCADA data for a turbine located at an onshore wind 

farm in the Yalova region of Turkey. Machine learning, 

in the form of a deep learning Temporal Convolution 

Network (TCN) and non-parametric k-nearest neighbour 

(kNN) regression, were also used to predict wind speed 

and power generation respectively.  

Fahim et al. [9] were able to provide wind speed and 

power generation predictions rivalling other machine 

learning techniques. However, there was a lack of 

explanation as to how a DT would be deployed, either in 

the field or during testing, and power generation 

predictions were limited to 2018 (the extent of the 

SCADA dataset available). Additionally, the use of 

machine learning did not appear fully integrated with the 

DT. Rather the results presented appeared to utilise the 

historical SCADA dataset but did not provide evidence of 

being used in the context of the DT framework proposed. 

Kim et al. [36] proposed a physics-based DT to 

overcome the reliance on historical SCADA data for 

model training. The approach provided promising results 

for a test floating wind turbine, though focused on “live” 

updates on power generation as opposed to longer-term 

predictions and requires continuous sensor readings in 

order to provide predictions. Additionally, the proposed 

physics-based approach requires a thorough 

understanding of the wind turbine and local environment 

in question, with a complete change in model required 

depending on wind turbine model and location.  

As such, this research looks to contribute a DT with 

live power generation forecast capabilities, as opposed to 

being restricted to the timeframe of a given dataset and 

SCADA availability. This is achieved via the 

development of a machine learning model to predict wind 

turbine hub-height wind speeds based on live weather 

forecast data provided via an Application Programme 

Interface (API). Predicted hub-height wind speed is then 

used with a machine learning power generation prediction 

model to provide a power generation forecast. By 

incorporating this into a fully-functioning DT framework, 

a fully realised, deployable, power generation forecasting 

DT is delivered, capable of providing continuously 

updating live predictions for a wind turbine.  

The proposed DT does not maintain a direct link to 

a wind turbine as might be expected from DT definitions 

highlighted, instead using live weather forecast data. It is 

considered that the DT proposed offers a simulation of the 

anticipated live and future state of the wind turbine in 

question and as such, the proposed framework and its 

deployment are referred to as a “Simulated Twin” 

(SimTwin) for the remainder of the paper. 

2 Methodology  

2.1. Data  

Wind speed and power generation data were derived from 

historical SCADA data [37] for a wind turbine at 



 

Kelmarsh Wind Farm near Haselbach, Northamptonshire 

comprising 6 wind turbines. Table 1 provides wind 

turbine data details. Historical wind speed forecasts for 

the 2-year 2019-2020 period and live wind speed forecasts 

were also used, sourced from OpenWeather [38]. 

Table 1. Wind turbine data overview [37] 

Estimated location 

52°24'2.30"N (latitude), 

0°56'49.38"W (longitude) 

Rated power 

generation 
2.05 Mega Watt (MW) 

Hub-Height 78.5m 

Turbine type Senvion MM92 

Start/End of dataset  01/01/2019 – 31/12/2020 

SCADA frequency 10-Minutes 

2.2. Predictive models 

kNN regression is a non-parametric pattern recognition 

method [39]  that has seen popularity due to its successful 

use for time series forecasting whilst remaining relatively 

simple [40], with the technique seeing use for forecasting 

both wind speed and wind turbine power generation [41, 

42]. kNN utilises the average of nearby observations to 

provide an estimated value [43] and distance is used to 

decide if observations are considered nearby, given by k 

[44]. An optimum k value is imperative. Smaller values 

can lead to over-fitting, with greater values potentially 

resulting in worse performance [43].  

 

kNN regression is considered a suitable initial 

method for the development of the predictive models 

developed. Time-series SCADA and wind speed datasets 

were used to develop and implement the predictive 

capabilities of the SimTwin, with kNN highly compatible 

with time-series data. Additionally, the simple setup and 

relatively quick calculation time make it useful for 

continuous live updates. As previously highlighted, kNN-

based research has produced robust power generation and 

wind speed prediction results [25, 9]. Taking into 

consideration the low computational and user 

requirements, kNN-based methods have demonstrated 

results comparable to more intensive methods, such as 

Long Short-Term Memory (LSTM), Support Vector 

Regression (SVR) and Bagging Regression (BR) [Mehr, 

2021]. 

kNN regression was undertaken utilising a 

Minkowski distance measurement, given by [45]: 

   D=(∑ (|ui-vi|)
p)

1

p                             (2) 

Where D is Minkowski distance, u is input array, v 

is output array and p is the order of the norm of the 

difference ||u-v||
p
 [45]. 

 

The use of kNN regression to predict hub-height 

wind speed ( PWHUB ) from lower level wind speed 

( WLOW ) and predicted power generation ( PG ) from 

predicted hub-height wind speed is given by the following 

functions respectively: 
                         F(WLOW)→PWHUB                        (3) 

                           F(PWHUB)→PG                           (4) 

Wind speed prediction results have also been 

compared to alternative methods to kNN regression 

considered appropriate for wind speed forecasting. These 

have been chosen for their ability to provide relatively 

quick updates as would be required by the SimTwin to 

give continuously updating results. The Wind Speed 

Power Law (WSPL) is a physical law that can be used to 

estimate upscaled wind speeds utilising a reference height 

with a known wind speed given by the equation [46]: 

                          Uh=Ug(
Zh

Zg
)
α

                               (5) 

Where Uh  is target wind speed at height Zh , Ug  is 

known wind speed at height Zg  and α is the power law 

exponent. A value of 0.143 is typically adopted for α 

under neutral stability conditions.  

Decision Tree Regression (DTR) has also been 

used, which breaks data into small sub-groups [9]. 

Extreme Gradient Boosting (XGBoost) regression is a 

gradient-boosted decision tree, which combines weaker 

models, providing a unified stronger model [47]. 

2.3. SimTwin framework 

Fig. 1 highlights the high-level architecture used to 

implement the power generation forecasting SimTwin. 

 

Fig. 1. High-level SimTwin framework overview 



 

2.3.1 Hub-Height wind speed prediction 

Power generation forecasting requires the prediction 

of future wind speed, necessitating the use of weather 

forecasting services. Wind speed predictions for the wind 

turbine location were sourced from OpenWeather’s One 

Call API 3.0 [48]. This provides hourly forecasts for a 48-

hour period, including wind speed. However, as this is 

given at a different altitude than the hub-height of the 

wind turbine this needed to be converted.  

A hub-height wind speed prediction model was 

derived using hub-height wind speed from the SCADA 

dataset and historical wind speed data sourced from 

OpenWeather [49] for the same timeframe (see equation 

3). Historical lower-level wind speed data from 

OpenWeather is given for hourly periods and as such the 

10-minute SCADA dataset was averaged to give an 

hourly value. Historic wind speed data was used as an 

input to kNN regression with the higher hub-height wind 

speed as the desired target. The kNN regressor looks to 

predict the anticipated hub-height wind speed for a given 

low-level wind speed by utilising the average of nearby 

wind speeds for a given point, as identified by k. Grid 

search was used to calculate the optimal k value for the 

model, with values between 1 and 100 trialled. In doing 

so, a kNN model was derived capable of taking lower-

height wind speed and upscaling it to hub-height.  

Live weather forecasts from the One Call API 3.0 

were accessed using an API call to the OpenWeather One 

Call API 3.0 web address. Upon calling, 48-hour, hourly, 

wind speed dataset is provided in JSON format. This 

dataset is then inputted into the kNN wind speed 

upscaling model and anticipated correlating hub-height 

wind speed generated, providing a 48-hour prediction of 

hub-height wind speeds. This was undertaken at frequent 

repeating periods, providing continuous hub-height wind 

speed predictions based on the latest weather forecast. 

2.3.2 Power generation forecast 

Wind speed at hub-height and actual power generation 

from the SCADA dataset was used to train a kNN 

regression model capable of predicting power generation 

for a given hub-height wind speed (see equation 4). Data 

was averaged so to give an hourly value, reflecting the 

hourly values used for hub-height wind speed prediction 

and power generation forecasting. Grid search was also 

used, with values between 1 and 100 trialled. 

The 48-hour hub-height wind speed predictions 

were used in conjunction with the power generation 

prediction model, giving a 48-hour power generation 

forecast for the wind turbine. This was set to occur at 

frequently repeating periods, providing continuously 

updated power generation forecasts.  

2.3.3 Exportation to Azure IoT Hub 

The hub-height wind speed and power generation 
forecast are converted to JSON (“UTF-8” encoding and 
content type “application/json”) and exported to Azure 
IoT Hub. This is then continuously updated upon 
receiving power forecast data.  

2.3.4 Azure Digital Twin model display 

Azure Digital Twin requires models to be defined using 

Digital Twin Definition Language (DTDL). This enables 

the establishment of relationships to allow for grouping of 

different components of a DT, allowing a better 

understanding of how these may interact with each other 

[50]. In this case, official documentation [50,51] has been 

used to generate a simple wind farm model comprising 3 

wind turbines, one of which is used to represent the wind 

turbine tested. A 3D model [52] has also been imported 

for added visualisation. 

An Azure Function, adopted from official 

documentation [53], decodes and sends relevant data from 

IoT Hub to Azure Digital Twin which is then displayed. 

The Azure Function continuously sends relevant data 

upon the arrival of new data to IoT Hub, allowing the DT 

model to display the most recent hub-height wind speed 

and power generation forecasts. Fig. 2 shows the wind 

turbine in Azure Digital Twin graph layout and the 3D 

wind turbine model. T1 refers to the wind turbine tested. 

It is noted that this is not intended to reflect the makeup 

of Kelmarsh wind farm but rather act as a general 

representation.  

 

Fig. 2. Azure Digital Twin graph and 3D model overview 

2.4. Model performance metrics 

Root Mean Square Error (RMSE) was used to measure 

model performance, allowing comparisons with similar 

research. This considered a suitable performance 

evaluation metric for wind power as it assigns additional 

weight between large differences between actual and 

predicted values compared to smaller differences [54]. 

RMSE was calculated so to give the difference between 

predicted and actual values for wind speed and power 

generation. A lower RMSE value is considered better and 

is given by the equation [55]: 

                      RMSE=√
1

n
∑ (ei-e̅)

2n
i=1                         (6) 

Where ei is an actual value and e̅ is a predicted value. 

2.5. Power forecast SimTwin testing parameters 

All tests undertaken are highlighted in Table 2. To 

test the deployment of the SimTwin framework, 12 

months of power generation and wind speed SCADA 

data, as well as 12 months of historical wind speed 

forecasts were used to generate the power generation 

prediction model and hub-height wind speed prediction 

model. A wind speed forecast for the future 48-hour 

period of 16:00 on 21/06/2023 to 15:00 on 23/06/2023 

was sourced from One Call API 3.0, upscaled to hub-

height, and fed into the power generation prediction 



 

model, thus giving a power generation forecast for the 

wind turbine during this period.  

Table 2. Model testing periods 

Test Training period Test period 

Q1 2019 predictions 
01/01/2019 – 

31/03/2019 

01/04/2019 – 

07/04/2019 

Q2 2019 predictions 
01/04/2019 – 

30/06/2019 

01/07/2019 – 

07/07/2019 

Q3 2019 predictions 
01/07/2019 – 

30/09/2019 

01/10/2019 – 

07/10/2019 

Q4 2019 predictions 
01/10/2019 – 

24/12/2019 

25/12/2019 – 

31/12/2019 

Q1 2020 predictions 
01/01/2019 – 

31/03/2019 

01/04/2020 – 

07/04/2020 

Q2 2020 predictions 
01/04/2019 – 

30/06/2019 

01/07/2020 – 

07/07/2020 

Q3 2020 predictions 
01/07/2019 – 

30/09/2019 

01/10/2020 – 

07/10/2020 

Q4 2020 predictions 
01/10/2019 – 

24/12/2019 

25/12/2020 – 

31/12/2020 

Future predictions 2019 (all) 
21/06/2023 – 

23/06/2023 

 

Given that no actual wind turbine data is available 

for this period, the validity of the hub-height wind speed 

prediction and power generation prediction kNN models 

was calculated by producing alternative models. These are 

capable of making predictions during the SCADA dataset 

timeframe, allowing comparisons with actual output 

during this period. This was achieved by using historical 

OpenWeather wind speed data for both training the hub-

height wind speed prediction model and for calculating 

power generation. Model training was undertaken using 

quarterly data, with the following week used to test the 

models. Q4 2019/2020 data was reduced by 1 week to 

allow a test period within the 2020 timeframe of the 

SCADA dataset.  

3 Results 

Results are split into 3 sections; The first section provides 

2019 weekly results for the hub-height wind speed 

predictions based on quarterly 2019 training data, with the 

actual SCADA-derived hub-height wind speed for the 

same period provided for comparison. The kNN 

regression method adopted is also compared to WSPL, 

DTR and XGBoost-based approaches. kNN regression-

derived weekly results for 2020 based on quarterly 2019 

data are also provided.  

The second section highlights the 2019 and 2020 

weekly power generation forecast results using the kNN 

regression-derived predicted hub-height wind speeds and 

actual SCADA-derived hub-height wind speeds as inputs. 

These results have been presented alongside SCADA-

derived wind turbine power generation for comparison.  

The third demonstrates the deployment of the 

SimTwin for the future period of 16:00 on 21/06/2023 to 

15:00 on 23/06/2023. 

3.1. Quarterly hub-height wind speed results 

Table 3 outlines measured performance in the form of 

RMSE for the 2019 test periods for each quarter, 

performed for the range of methods considered to be 

suitable for wind speed prediction. The k value used for 

kNN-based predictions is also presented.  

Table 3. 2019 wind speed prediction comparative methods 

Method Q1 2019 Q2 2019 Q3 2019 Q4 2019 

kNN 

(k value) 
81 62 75 41 

kNN 

(RMSE) 
1.31 1.13 1.16 1.31 

WSPL 

(RMSE) 
1.36 1.28 1.27 1.45 

XGBoost 

(RMSE) 
1.32 1.14 1.17 1.31 

DTR 

(RMSE) 
1.64 1.3 1.27 1.52 

Table 4 outlines the measured performance and k 

value used for the 2020 test periods for each quarter, 

performed using kNN regression for wind speed 

prediction.  

Table 4.  2020 wind speed prediction performance values 

Fig. 3 to Fig. 6 outline the 2020 week-long wind 

speed predictions based on 2019 quarterly training data. 

Predicted wind speed is given in meters per second (m/s).  

 

Fig. 3. 1-week 2020 wind speed prediction (Q1 2019 training) 

Value Q1 2020 Q2 2020 Q3 2020 Q4 2020 

k value 81 62 75 41 

kNN 

(RMSE) 
1.13 1.17 1.34 1.99 



 

 

Fig. 4. 1-week wind speed prediction (Q2 2019 training) 

 

Fig. 5. 1-week wind speed prediction (Q3 2019 training) 

 

Fig. 6. 1-week wind speed prediction (Q4 2019 training) 

3.2. Quarterly power generation results 

Table 5 outlines measured performance and k value used 

for the 2019 test periods for each quarter, performed using 

kNN regression for power generation prediction based on 

predicted and SCADA-derived hub-height wind speeds.  

Table 5. 2019 Power generation prediction performance values 

Value 
Q1 

2019 

Q2 

2019 

Q3 

2019 

Q4 

2019 

k value 38 30 19 97 

Predicted 

wind speed 
261.36 169.14 236.86 382.08 

SCADA 

wind speed 
57.20 35.96 45.86 63.33 

Table 6 outlines measured performance and k value 

used for the 2020 test periods for each quarter, performed 

using kNN regression for power generation prediction 

based on predicted and SCADA-derived hub-height wind 

speeds.  

Table 6. 2020 Power generation prediction performance values 

Value 
Q1 

2020 

Q2 

2020 

Q3 

2020 

Q4 

2020 

k value 38 30 19 97 

Predicted 

wind speed 
239.67 268.36 323.48 434.63 

SCADA 

wind speed 
49.10 90.06 59.46 253.12 

Fig. 5 to Fig. 9 outline the 2020 week-long power 

generation predictions based on 2019 quarterly training 

data. Predicted power generation is given in kilowatts 

(kW).  

 

Fig. 5. 1-week 2020 power prediction (Q1 2019 training) 

 

Fig. 7. 1-week 2020 power prediction (Q2 2019 training) 

 

Fig. 8. 1-week 2020 power prediction (Q3 2019 training) 



 

 

Fig. 9. 1-week 2020 power prediction (Q4 2019 training) 

2.1. Live SimTwin result 

Fig. 10 and Fig. 11 show the graphical output of the 

forecasted hub-height wind speed and power generation 

calculated for a future 48-hour period, giving a graphical 

demonstration of the live deployment of the SimTwin as 

would be displayed in the Azure Digital Twin (see Fig. 2). 

 

Fig. 10. “Live” hub-height wind speed forecasting 

 

Fig. 11. “Live” power generation forecasting 

4 Discussion 

It has been demonstrated that the SimTwin framework 

proposed is deployable and capable of providing live and 

updating forecasts of future hub-height wind speed and 

power generation for a wind turbine. This may prove 

useful for operators by reducing reliance on SCADA 

systems and associated physical wind turbine sensors. 

Additionally, as a DT necessitates the need for live data, 

this provides a useful tool for DT development where live 

and historical data may be limited.  

The testing results show that the kNN hub-height 

wind speed model was capable of upscaling historical 

OpenWeather low-level wind speed hub-height forecasts 

to a reasonable accuracy across all quarters tested barring 

Q4 2020, though still picked up on the general trend in 

wind speed fluctuations. The kNN regression approach 

taken produced lower RMSE results than WSPL and 

DTR. XGBoost results are generally considered on a 

similar level to that of kNN regression whilst requiring 

significantly greater model tuning and additional training 

time. As such, the kNN approach presented is considered 

the most appropriate for the development of an easy to 

deploy, responsive, DT system.   

The kNN power generation model showed relatively 

impressive results when using SCADA-derived hub-

height wind speed for the week tests undertaken for Q1, 

Q2 and Q3 of 2020. Q4 proved more challenging to 

predict, resulting in lower accuracy, however this is 

anticipated to be due to a partial shutdown of the wind 

turbine when no generation occurred. This demonstrates 

that the kNN power generation prediction model is 

generally capable of providing accurate power generation 

results given an optimum hub-height wind speed input.  

When predicting power generation using predicted 

hub-height wind speeds, the model also demonstrated 

reasonably accurate results, capturing the general trend of 

power generation. The RMSE for this was higher than 

utilising the SCADA-derived wind speeds, due to the 

error already introduced when upscaling the predicted 

hub-height wind speeds.  

It was also demonstrated that the proposed 

framework can produce reasonable predictions for both 

short and long timescales, thus increasing its potential 

usefulness. 

Table 7 highlights select results from Fahim et al. 

[9]. Week-long quarterly hub-height wind speed 

predictions were undertaken for a different wind farm 

than that test in this paper, however, this is considered a 

useful comparative metric for predicting wind speed. 

Table 7. Wind Speed Predictions [48] 

Test Wind Speed RMSE (1 Week) 

Q1 2018 1.76 

Q2 2018 1.25 

Q3 2018 0.88 

Q4 2018 0.90 

Hub-height wind speed predictions utilising the 

kNN hub-height wind speed model produced a  lower 

RMSE in both Q1 and Q2 in both 2019 and 2020, though 

RMSE was higher in Q3 and Q4 2019 and 2020. Overall, 

it is considered that the ability to upscale wind speed from 

an easily accessible source of wind speed data, make 

predictions over long timescales and the simplicity of the 

kNN model may potentially be worth the trade-off in the 

correct circumstances, such as in situations with limited 

data availability and where ease of model training is 

required. 



 

Despite this, there are potential methods that could 

be utilised to improve performance. The use of alternative 

weather forecasting services [56] may give a more 

accurate representation of wind speed at the site of the 

wind turbine. The inclusion of other factors beyond wind 

speed and power generation may prove beneficial if 

available in alternative datasets. This includes 

temperature, pressure, wind direction and humidity [32]. 

Alternative approaches could be tested, such as deep 

neural networks [32] and hybrid approaches combining 

physics, statistics and machine learning techniques [28]. 

It is envisaged that the SimTwin framework 

demonstrated in this paper could act as an alternative 

system to SCADA systems, reducing reliance on wind 

speed sensors by providing reasonable wind speed and 

power generation forecasts for use by wind turbine 

operators. The relative simplicity of the system should 

also help with ease of deployment. Additionally, it is 

anticipated that the outputs of the SimTwin would provide 

a useful tool in research and development environments, 

particularly when access to live wind speed and power 

generation forecasts are needed but inaccessible. This 

includes research into the fatigue effect of wind loading, 

the management of power generation and the storage of 

additional power generation, which can be undertaken in 

real-time.  

Future work should look to include the potential 

improvements highlighted and test the model for different 

wind turbine models in differing locations, including both 

onshore and offshore installations. 

5 Conclusion 

Wind power is a key pillar for the decarbonisation of 

electricity generation. Digital Twin (DT) technology 

allows increased integration between physical assets and 

virtual models including live monitoring, updates and 

predictions, allowing suitable and informed actions to be 

undertaken. It has been demonstrated that a power 

generation forecasting Simulated Digital Twin (SimTwin) 

is achievable, providing hub-height wind speed and power 

generation predictions beyond the timeframe of data 

availability via the use of a weather forecast API and 

machine learning in the form of k-nearest neighbour 

(kNN) regression-based models.  

The use of kNN regression for hub-height wind 

speed prediction was seen to have comparable or better 

results when compared to the Wind Speed Power Law 

(WSPL), Decision Tree Regression (DTR) and Extreme 

Gradient Boosting (XGBoost) regression. Additionally, it 

has been demonstrated that this approach can provide 

reasonable predictions for short and long timescales. This 

reduces reliance on Supervisory Control and Data 

Acquisition (SCADA) systems and associated physical 

wind turbine sensors and provides a useful tool in DT 

research where dataset availability may be limited. 

Furthermore, by using live openly available weather data, 

power generation predictions can be expanded to entire 

wind farms, as well as for regional, national or global 

ranges of wind turbine power production.  

Future work should look to provide improvements 

to hub-height wind speed predictions and power 

generation forecasts. This may be achievable by using 

different machine learning techniques, alternative weather 

prediction sources, hybrid approaches and more detailed 

historical power generation and wind speed datasets. 
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