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1 Abstract

Traditional predictive simulations and remote sens-
ing techniques for forecasting floods are based on
fixed and spatially restricted physics-based models.
These models are computationally expensive and
can take many hours to run, resulting in predic-
tions made based on outdated data. They are also
spatially fixed, and unable to scale to unknown
areas. By modelling the task as an image segmen-
tation problem, an alternative approach using ar-
tificial intelligence to approximate the parameters
of a physics-based model in 2D is demonstrated,
enabling rapid predictions to be made in real-time.

2 Introduction

Predicting floods and other events caused by ex-
treme weather relies on computational simulations
using techniques such as cellular automata to pre-
dict them in advance [15]. These events can have
severe impacts, such as destruction of property and
injury and/or loss of life, making their prediction
in a timely manner essential to avoid humanitarian
disasters [42].

Physics-based simulations are used in a variety of
contexts, including hydrology [7, 38, 39], climate
[15], and others [13, 4] - but while accurate are com-
putationally expensive and time consuming to run,
resulting in predictions made using outdated data.
This makes them unsuited for real-time estimation
of hazardous phenomena in situations in which
conditions are unpredictable.

AI has previously been used for predicting and

*Corresponding Author: L.Bryan-Smith@hull.ac.uk

monitoring such events in the form of simple
ANNs [12], sequence to sequence (LSTM) [21], im-
age classification [28, 43, 24], and more [8], but
these approaches are limited to a single geographi-
cal point at a time (e.g. the flow rate of a river at a
single point) - leaving characterisation of the flood
itself to a hydrodynamic model (as explained in
section 3.1 [21]).

In this paper, we present a feasibility study for ap-
proximating the parameters of a physics-based hy-
drological simulation [7] with an AI model. We
achieve this by modelling the problem as an image
semantic segmentation task. Our model, given an
input of T time steps of input data that would nom-
inally be fed to a physics-based model, predicts
the output this computational model would have
produced in real time.

While for our approach we utilise water depth
prediction from rainfall radar data [41] and a
heightmap [30], we aim that our approach be ap-
plicable to other domains. We make the following
contributions in this paper:

• A state-of-the-art model architecture for pre-
dicting water depth in 2D

• The outline of a system could be used in har-
mony with existing hydrodynamic models to
map floods in real time

• An illustration of improvements made from a
baseline DeepLabV3+ model and their effec-
tiveness in achieving accurate predictions, and
the challenges that still remain
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3 Related works

3.1 Computational simulations

Hydrological simulations to map and simulate the
flow of water are available using a variety of al-
gorithms. Models are either particle based [10] or
cell based [7]. Models with 3 dimensions are the
most computationally expensive, so are not used
in this project. These are followed by models in 2D
such as CAESAR-Lisflood [7] which have a lower
computational cost.

Unfortunately, these models are still rather com-
putationally expensive. Attempts have been made
to reduce the computational requirements of these
models. One option is to utilise GPU acceleration
[39] or cellular automata [7], but while this does re-
duce the computational complexity it is not enough
to run the model in real time over a large area.

Another avenue that has been explored to reduce
this cost is simplifying the underlying algorithm.
Such simplified algorithms [29, 22] are an order of
magnitude less resource intensive, so as a result can
process wider areas at once than e.g. 2D models
implementing shallow water equations, but are less
accurate [40].

At the other extreme, large climate simulations run
by governments on high performance computers
have the capability to simulate many parameters
at once for large areas [15, 44], but are often com-
mercial and access to data is limited, aside from the
clear computational cost barrier.

3.2 Learning Models

With the advent of Deep Learning, it has been used
in a variety of contexts to predict floods. The sim-
plest of these approaches is to predict water depth
at a single point in a river a given amount of time
in advance [21], or multiple points across a river
basin [26]. This is only a proxy for predicting water
depth across a wider area though, with a physics
based model (section 3.1) required for this purpose.

Covering wider areas with AI has been tackled in
a number of ways. Hybrid models involve using
AI to make some prediction, and then hand off to a
physics-based model [25, 39, 27]. Another option
is to make and/or predict indirect measurements

(e.g. the state of a municipal drainage system), and
use these to predict the actual state of the world
[19]. All of these options either have the same com-
putational expense limitations as the hydrological
models they call or make predictions for single ge-
ographical points, limiting generalisability.

Alternatively, data from satellites or automated
drones can be used to estimate the extent of a flood
[35, 32, 31]. These methods can produce accurate
maps of the extent of a flooding event, but are either
expensive and high effort (drones) or low frequency
and sometimes limited by clouds (satellites).

4 Data

Before we can train a model (see section 5.1), a
ground truth label upon which to train it must first
be calculated. In our project, we achieve this by run-
ning the hydrological simulation model CAESAR-
Lisflood [7] - specifically the C++ implementation
HAIL-CAESAR [9], which we applied minor I/O
format modifications to. The inputs to this model
are geographically centred around the Humber es-
tuary in the United Kingdom (as data from the UK
was readily available, and the nature of the area is
already known), though the model is designed to
be trained on data from any location. These inputs
are twofold:

1. Rainfall radar data: Every 5 minutes from
2006-01-01 to 2020-10-02, sized 105×174. Total
timesteps: 1.48M [41].

2. Heightmap: Ordnance survey terrain 50
dataset [30]

The hydrological simulation model simulates water
flow using simplified 2D shallow water equations,
and outputs an absolute water depth map for the
simulated area at the same time frequency as the
input rainfall radar data, measured in metres. This
map is then binarised into 2 classes: “water” (1)
and “not water” (0) with a threshold of 0.1m. We
calculate a ratio of 22.1%:77.9% (water:not water)
between the 2 classes. This is the ground truth
label used to train the model, as shown in figure 1.
Data is stored in the tensorflow TFRecord format
to optimise read performance. 4000 samples are
stored per file, totalling 371 files.
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Figure 1: An overview of the process of by which
the model was trained. First, ground truth la-
bels are generated by running the rainfall radar
and heightmap data through a traditional physics-
based model [9]. Then, the resulting water depth
data is binarised and used as a ground-truth for
training a semantic segmentation AI model.

5 Approach

5.1 Semantic Segmentation

Image semantic segmentation models perform the
task of pixel-wise classification on some input im-
age, segmenting it into logically distinct categories.
For example, an image of a typical urban street in
the form of an 128 × 128 × 3 channels-last matrix
could be semantically segmented into categories
such as building, road, and person, with the
output in the form 128× 128×N , where N is the
number of classes to segment the input image into.

This technique has been adapted to make 2D predic-
tions rainfall in the future, using rainfall radar data

Figure 2: A visualisation of how data was prepro-
cessed. t is moved forwards by one place at a time,
and at each place input and ground truth data are
calculated to make another sample the model can
be trained on. Thus, a large number of time steps
(96 in this case) are covered using a small amount
of memory (see also section 5.2).

from a few hours prior [41, 2, 37]. While rainfall
predictions are valuable, this is not the only source
of flooding [17] and are of limited use for flooding
prediction without being coupled to a hydrological
simulation.

In this project, ‘image’ semantic segmentation is
used to approximate water depth from rainfall
radar data in 2D. Multiple semantic segmentation
model architectures have been developed in the
field, and such model architectures naturally lend
themselves not only to their originally intended
purpose (segmenting images), but also to our prob-
lem too. The earliest attempt the authors could find
at a model architecture to solve the problem was
FCN [36], which has a simple encoder followed
by a 1-layer segmentation head. By far the most
popular architecture for the task though is U-Net,
which consists of a more full encoder-decoder au-
toencoder connected with skip connections [33].
SegNet is similar to U-Net, but improves on it by
reducing memory usage (specifically by pooling
directly before skip connections) [1], yet still falls
short when handling complex scenes and minority
classes.

Connectedness is a key theme of this class of model.
PSPNet takes account of global structure with a
pyramid architecture to attempt to handle the com-



6 EXPERIMENTS 4

plexity and minority class issue [45], but the current
state-of-the-art is DeepLabV3+ [6]. By combining
a PSPNet-style pyramid with dilated (atrous) con-
volutions [5] and a U-Net encoder-decoder style
model, significant performance improvements can
be observed in both of the aforementioned areas.
It is this model that forms the backbone of our ap-
proach.

5.2 Memory limits

A key challenge of training such a model on high-
frequency data is GPU memory (VRAM) usage. To
address this, we slice our data into samples and
reduce the input into 8 channels of an ‘image’, as
illustrated in figure 2. Consider two lists of X × Y
matrices, Wt representing binarised ground truth
water depth data from the hydrological simulation
outlined in section 4, and Rt representing rainfall
radar data.

The input to the model can be considered a sliding
window. Set bin sizes bs = [1, 3, 3, 5, 12, 24, 48], and
then the rainfall radar data is processed as such:

R′
t,c =

t−
c+1∑
j=0

bs

max
i=t−

c∑
j=0

bs

|Ri| (1)

where each successive sublist of time steps collec-
tively in the range R[t−(

∑
bs):t] are collapsed into

a single set of channels channel in the form R′
t,c

by taking the maximal value, and c is the channel
of R′

t,c. This has the practical effect of reducing 96
channels to just 8, significantly reducing the VRAM
required - and is represented visually in figure 2.
As an addendum, the ground truth label the model
learns from can be represented thus:

W ′
t[x, y] =

(
∑

Wt+offset[x− 1 : x+ 1, y − 1 : y + 1]) ≥ 1

(2)

where offset is an offset to the timestep as de-
scribed in section 4 and figure 2, and square-bracket
notation [xa : xb, ya : yb] indicates a submatrix.
This effectively causes any cell of Wt with a value
of 1 and all 8 neighbouring cells equal to 0 to be set
to 0, removing isolated pixels.

Hence, intuitively the input to the model R′
t,c is

of shape [batch, height, width, channel], and the
ground truth W ′

t is of shape [batch, height, width],
or [batch, height, width, class] when one-hot en-
coded.

6 Experiments

Our model is based on DeepLabV3+ [6], which
as explained in section 5.1 consists of an image
encoder (ResNet50), followed by a pyramid archi-
tecture such that the 2D output is a ‘semantic seg-
mentation’ with each pixel being the binary classes
water/no water. In other words, a per-pixel proba-
bility of each class - which is identical in shape to
the ground truth labels (W ′

t ) used for training (all
one-hot encoded). To decode the one-hot encoded
output, for each pixel the highest value is taken
to be the predicted class (e.g. P ′

x,y = f(Px,y,c), if
c is the class) - as in P ′[x, y] = i of max|P [x, y]i|,
where i is the class index (i.e. in this case i ∈ {0, 1}).

The input to this model is the rainfall radar data
and the heightmap, as in section 4 - these are com-
bined so that the heightmap becomes a channel of
R′

t,c. Our model has following hyperparameters:

• Total parameters: 11.87M
• Learning rate: 0.00001
• Batch size: 32
• Encoder: ResNet50 [14]
• Loss function: Additive cross-entropy and

Dice loss (i.e. loss = cel + dice)
• Upscaling: We adjusted to the original

DeepLabV3+ model [5] to scale the input from
128× 128 to 256× 256 using nearest interpo-
lation

• Offset: From rainfall radar data, water depth
5 minutes in the future is predicted.

We chose these hyperparameters based on a series
of experimental comparisons. We trained our mod-
els on various Nvidia GPUs, subject to availability:
Nvidia (A40), Tesla (K40m, P100), GeForce (2060,
3060). Models trained for a total of 25 epochs, and
we picked the checkpoint with the highest vali-
dation accuracy. We used an 80% - 20% training-
validation data split, with files being randomly al-
located to each using the fisher-yates shuffling algo-
rithm [11]. All models were trained with the same
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Figure 3: Accuracy and Dice loss plots for the mod-
els we trained. Overfitting is observed if models
are trained for too long. All adjustments (see also
table 1) show improvements apart from log-cosh,
which was dropped.

files in the same partition of the split.

With these settings, our model took a total of 3
days 7 hours to train, and 36 seconds to make a
prediction (processing an entire batch at a time).
The source 2D hydrological model that generated
the water depth label data took 14 days 8 hours to
complete. These include setup and teardown, such
as loading system libraries.

The metrics from the models we trained are pre-
sented in table 1. Starting from an unmodified
baseline DeepLabV3+ model, we iteratively im-
proved the model to function more effectively on
our task. We measured a number of metrics includ-
ing accuracy (‘acc’), dice coefficient (‘dice coef’),
and intersection-over-union (‘mean iou’). We show
plots of the former two in figure 3. Performance
gains are obtained relatively early in the training
process, with further epochs leading to overfitting.

6.1 Discussion

The biggest issue we faced with our learning task
was the output resolution of the semantic segmen-
tation model - especially on the boundary between

classes. Adding remove isolated() as described in
section 4 (+1.3% val acc.), changing our loss func-
tion from simple cross-entropy-loss to include dice
loss additively (+0.4%), and upscaling the input (x2;
+6.8%) all improved validation accuracy (shown
in brackets). We also experimented with using a
loss function of loss = cel + log(cosh(dice)) as [16]
suggests that log(cosh(dice)) is more tractable than
simply dice, but we found it to reduce our vali-
dation accuracy and all other metrics (-0.8%). We
reduced the learning rate from the default of 0.001
to 0.00001, as we observed this reduced instabil-
ity in validation accuracy and the dice coefficient -
though this reduced our accuracy slightly (-0.2%).
The dataset is also very large (about 1.4M samples),
further supporting the reduction in learning rate.
All metrics are validation accuracy.

With this in mind, we pick the hyperparameters
of the model with upscaling but not log-cosh. We
plot predictions from each model alongside ground
truth in figure 4. The adjusted model is shown to
make predictions at a higher fidelity than the initial
baseline, effectively matching the patterns in the
ground truth by making predictions based on the
input rainfall and heightmap information.

A key limitation in designing the model was vi-
sual fidelity and GPU video memory (VRAM) as
described in section 5.2. Much of the design was
done before the Nvidia A40 mentioned above was
available (which has 48GB VRAM), limiting our
model design choices to those that fit within a 16
GB VRAM envelope. With additional computa-
tional resources now available, the visual fidelity
may potentially be further improved at the expense
of more VRAM through additional upscaling - per-
haps by x8 compared to the x2 used in the models
presented here.

Another observation we make is of significant vari-
ation in validation accuracy during the training
process. This is emphasised if we calculate the stan-
dard deviation of the metrics (excluding the first
five epochs) as reported in table 2. We suggest that
this is due to the complexity of the task and the pre-
dicted output. The complexity of the task could be
reduced by adjusting the source hydrological simu-
lation used. For example, this could include filling
in holes in the heightmap, or choosing a different
hydrological simulation model that accounts for



6 EXPERIMENTS 6

acc dice coef mean iou val acc val dice coef val mean iou
baseline 0.887 0.443 0.747 0.880 0.446 0.737
+ ri 0.897 0.438 0.767 0.893 0.437 0.759
+ lr0.00001 0.892 0.436 0.756 0.891 0.436 0.754
+ dice loss 0.902 0.439 0.776 0.895 0.438 0.762
+ upscaling 0.979 0.464 0.949 0.963 0.466 0.911
+ log-cosh 0.974 0.464 0.935 0.955 0.463 0.890

Table 1: Metrics for our DeepLabV3+-based binarised water depth prediction models. For each model
variant, the model was trained for 25 epochs, and then the epoch with the highest validation accuracy
was chosen for display here. We iteratively improved on a baseline DeepLabV3+ model [6] by removing
positive pixels surrounded by negative ones (ri), reducing the learning rate (lr0.00001), including dice
loss additively (dice loss), upscaling the inputs and outputs (upscaling), and adding log(cosh(dice loss))
(log-cosh) - though the latter adjustment slightly reduced performance, so was discarded.

Figure 4: Training predictions by each of the models described in table 1, along with the ground truth
prediction (left) and the processed rainfall data that is used as input (1 from the left). When reading
digitally, we recommend zooming in to observe the at times subtle differences between the different
predictions.

groundwater flow. By implementing these changes,
we would expect that the complexity of the pre-
diction task and the variation in validation metrics
would be lowered, and the quality of predictions
improved.

We observe a general negative trend in model val-
idation performance the more epochs it is trained
for. This suggests that our model is overfitting if
trained for too long. We also note that, as men-
tioned in section 4, our dataset is somewhat unbal-
anced. We used additive dice to our loss function to
counteract this, but exploration of other techniques
like weighted and shape-aware loss functions for
example would be worthwhile.

Our experiments demonstrate the feasibility of our
approach to predict floods in two dimensions. The
accuracy is limited by the hydrological simulation
the model is trained on, but with some adjustments

Training Validation

acc 2.97 × 10−4 0.0513
dice coef 8.19 × 10−5 0.0249
mean iou 7.27 × 10−4 0.117

Table 2: Standard deviation values for the +
upscaling model chosen in section 6.1 and pre-
sented in table 1. Significant variation was ob-
served in validation metrics.

to the hydrological simulation as explained above
our approach could effectively and rapidly make
direct predictions of water depth. We anticipate
that, after proper characterisation and analysis, the
model may be able to make accurate predictions
up to a few hours in advance after making these
improvements.
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7 Conclusion

Using the DeepLabV3+ model [6] as a base, we
have demonstrated a proof of concept for a new
method of directly predicting floods from rainfall
radar data and a heightmap in two dimensions. We
accomplish this by approximating a hydrological
simulation model. While our model’s performance
is limited by the nature and accuracy of the simu-
lation chosen (given that to the best of the authors’
knowledge no real-world dataset with a sufficient
temporal resolution exists to serve as training la-
bels), our method predicts an entire area at once -
avoiding the need for models to be retrained and
maintained for many individual locations or being
combined with an expensive hydrological simula-
tion to make useful multidimensional predictions.

In addition, our approach makes predictions more
directly than previous approaches that rely on e.g.
static camera footage [23] river levels [21] or sec-
ondary sensor networks [19].

Such advance warning is essential for minimising
humanitarian risk and preventing loss of life. To de-
velop this proof of concept further, we want to more
fully characterise the model’s strengths and weak-
nesses - e.g. under different weather patterns. Fu-
ture work could also include tuning the source hy-
drological simulation based on the lessons learned
about the nature of the semantic segmentation task
framing to improve performance, and accounting
for additional variables in our simulation such as
sources of flooding other than rainfall (e.g. tidal),
groundwater flow, and municipal drainage sys-
tems.

We also want to investigate developing a
geographically-invariant version of the model that
can use e.g. a tiled approach to make predictions
for larger areas without the need for retraining the
model, as the current version cannot generalise to
other geographical areas without retraining. A tiled
approach would split a rainfall/heightmap/water
depth dataset into equal squared tiles before train-
ing to make predictions, and could also increase
the resolution of predictions with a suitable hydro-
logical model as an input.

Finally, increasing the fidelity of predictions to 3
or more classes beyond binarised “water”/“no wa-
ter” would also improve usefulness of predictions

made.

Ultimately, a range of approaches is required to
effectively address the problem of accurately fore-
casting floods and their extent in real time. This in-
cludes not only hydrodynamic / climatological sim-
ulations [15, 7] and our approach to approximating
them with AI, also other diverse data sources such
as satellite data [34], remote sensing [19], and the
analysis of human-centred approaches like crowd-
sourcing [18] and social media [20, 3]. Different
sources complement each other and can improve
visibility / situational awareness.
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