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Abstract. Offshore wind turbine monopiles require structural health moni-
toring throughout their lifespan, yet direct structural measurements are lim-
ited. This paper combines numerical modeling and machine learning to present
an approach to obtain rapid estimations of monopile fatigue using hourly
metocean conditions. Aero-hydro-servo-elastic numerical simulations for a ref-
erence turbine provide the meta-model training dataset that encompasses
wind-wave conditions applicable to the North Sea. Analysis reveals condi-
tions whereby higher-order fully non-linear wave kinematics produce larger
damage values compared to linear waves. This increase in damage is absent
when implementing a simple probabilistic data lumping method. The pro-
totype meta-model is developed based on convolutional neural networks to
determine the monopile damage from measured wind-wave conditions at high
temporal frequency. The proof-of-concept meta-model provides a step-change
that demonstrates a promising approach to estimate monopile fatigue accu-
mulation at high temporal resolution with scope for development to specific
real-world offshore wind farms where validation data is available.

Keywords: Offshore wind · Monopile fatigue · Damage fraction · Non-linear
waves · Machine learning.

1 Introduction

Offshore wind turbine lifespan is dependent on the fatigue of parts and structural
components including the monopile due to repeated cyclic loading from wind and
waves. Fatigue failure predictions are fundamental during design of wind farms, al-
though rapid assessment of cumulative fatigue throughout the lifespan is limited.
Advancements in the temporal accuracy and speed in estimating monopile fatigue
aid tactical operation and maintenance decision, and can support life extension as-
sessments [28].
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Monopile fatigue can be evaluated through aero-hydro-servo-elastic numerical
modeling simulations encompassing many variables, with the environmental hydro-
dynamic and meteorological conditions being principle variables. Due to the complex
nature of real-world conditions, numerical modeling can require a degree of simplifica-
tion. For example, higher-order wave kinematics are noted within industry standards
[2] due to resonance effects, yet are commonly omitted in the majority of academic
research. This can result in an underestimation of structural loading and fatigue [14,
27], notably when the turbine is parked [14], although when operational the aerody-
namic loading is of greater importance.

Furthermore, in-situ environmental measurements are commonly ‘lumped’ to re-
duce the number of representative loading cases (wind-wave scenarios) thus minimis-
ing the computational demand. This data sampling can be conducted through various
principle techniques, Kühn [13] presented an iterative damage-equivalent approach
based on probability occurrence, Seidel [23] implemented a frequency domain ap-
proach, while recent advances include consideration of the turbine dynamics through
damage-equivalent contour lines [19, 12]. Lumped data and corresponding probabil-
ities need to maintain representation of the equivalent damage load associated with
the full dataset as best as possible. Data lumping provides a reasonable approach to
reducing computation time while obtaining an reasonable indication of fatigue, yet
the simplifications produce a degree of error [12], and omit wave frequencies close to
the structures eigenfrequencies that are critical for resonance effects.

Meta-models and statistical regression have been employed to reduce simulation
demands while maintaining accuracy [30, 17, 5]. The simplification of environmen-
tal conditions proves successful in determining bulk fatigue loads, yet offer limited
benefit when evaluating short time-frame and continuous temporal fatigue informa-
tion. Recently, structural monitoring of turbines has implemented machine learning
(see review by Stetco et al. [24]), including the use of artificial neural networks to
evaluate offshore wind turbine foundation damage using data-driven approaches [18].
While data-driven approaches are advantageous, turbine specific accelerometer data
is not always available, thus physics based modeling and machine learning is explored
herein to develop an approach towards predicting monopile damage based on basic
metocean data.

This paper presents a proof-of-concept application of deep learning to enable rapid
estimation of short-term monopile damage and the accumulated damage throughout
the lifespan. An exemplar metocean dataset is used to evaluate the influence of fully
non-linear (FNL) versus linear (L) wave kinematics on damage accumulation using
a traditional data lumping method, followed by comparison with the meta-model
estimations. The presented meta-model shows promise in accurately representing
the numerically simulated fatigue, although cross-validation of the damage values
against direct measurements is required to compliment and evaluate the simulated
damage accuracy.
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Fig. 1. Processes and outputs associated with development of the meta-model.

2 Methods

Numerical simulations of a reference turbine provide monopile fatigue damage val-
ues for an extensive range of aero- and hydro- dynamic stochastic representations,
forming the meta-model training data. The workflow is presented in Figure 1.

2.1 Areo-hydro-sevo-elastic simulations

Firstly, the input environmental kinematic datasets were generated. Kinematic flow-
fields of fully non-linear waves were simulated using Higher-Order Boundary Element
Method (HOBEM) [15] for 381 sea states with peak periods (Tp = [2, 23] s) and signif-
icant wave heights (Hs = [0.25, 10] m) in 30 m deep waters, encompassing measured
conditions at the North Sea FINO1 research platform [4] between August 2011-2021.
Simulation of sea states that extend into breaking wave regime were smoothed, thus
the simulated Hs is recalculated. Complimentary linear wave kinematic simulations
provide comparative insight. Turbulent wind flow fields are simulated using TurbSIM
[8], with mean hub height wind speed (Vh = [0, 25] ms−1) according to Kaimal model
with turbulence intensity A, as per IEC 61400-3 design standards [7].

Numerical simulations were conducted using the aero-hydro-elastic-servo simula-
tion software FAST(v7) [11] to obtain the monopile mudline fore-aft bending moment
(My) for the reference NREL-5MW wind turbine [9] with OC3 monopile founda-
tions [10] in 30 m water depth. The monopile was modeled as rigidly fixed to the
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seabed, and two turbine operational conditions were simulated, power-producing (op-
erational) or parked, whereby the appropriate blade pitch and rotor speed were ap-
plied [9]. The wind and waves were co-directional and mean currents neglected given
that the loading is predominately wave driven [20]. Additional damage load case
simulations including start-up, shut-down, and fault conditions required for design
standard [7] are not considered herein during the initial meta-model development.

As per IEC 61400-3 design standards [7] six 10-minute numerical simulations were
conducted with different wind and wave seeds for each combination of sea state (n.
381), wind speed (n. 25), and operational condition (n. 2), resulting in the output of
My for 114,300 environmental-operational scenario time series. This is conducted for
both linear and fully non-linear wave kinematics. An initial additional transient 30-
second run-in period was simulated but excluded from analysis. The 6×10min series
are appended to one-another to establish a 1-hour long series prior to fatigue cal-
culations [6]. This approach follows recommended design requirements for stochastic
realisations [7] and mitigates any potential modeling bias effects due to a specific
singular signal seeding, while increasing the statistical convergence [16, 25, 29].

2.2 Damage and fatigue calculations

Time-domain simulations of My are used to determine the associated monopile
damage fraction for each environmental-operational condition using a time-domain
approach [21]. The My time-series is converted to the approximate direct stress,
σ = (M2

y )
0.5/S, given the section modulus of a hollow cylinder, S = π(d4o−d4i )/(32do),

and do and di are the cylinder outer and inner diameters respectively. This simplified
approach is conservative due to assessment of one axis and omission of directional
dependence [5], justified by the simulated uni-directional environmental loading.

The varying amplitude of stress time-series recorded for each environmental-
operational scenario, denoted as j, are evaluated using rainflow cycle-counting tech-
niques and linear damage accumulation based on the Palmgren-Miner rule [21], re-
sulting in the associated damage fraction:

Dj =

Nc∑
i=1

ni

Ni
(1)

whereby Nc is the total number of stress amplitude bins, ni is the number of
cycles recorded in a given stress range bin (i), and Ni is the cycle limit of fatigue
failure for the given stress range bin based on a given S-N curve. An S-N curve for
transverse welds with detail of 71 MPa including the appropriate thickness reduction
factor as per guidelines are implemented [3], which is suitable for monopile welds [5].
Fatigue failure occurs when the damage fraction summation over time reaches unity.

The damage fraction associated with an hour long time-series Dj,hr for each
environmental-operational scenario is obtained by appending six 10-minute simula-
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tions. To provide clarity on the explicit methods in design standards [7], comparable
values are obtained when taking the average of the six 10-minuet simulations and
multiplying this value by six Dj,(6×10min); whereby assessment of data within this
study shows a near 1:1 relationship of Dj,hr = 1.013Dj,(6×10min) valid for (0, 0.0028).

It is noted the reported damage fraction values in this study are disproportion-
ately large due to extrapolation of a monopile diameter designed for 20 m water
depth to 30 m [26]. Further, resonance effects associated with the generator motion
and the second fore-aft tower bending mode increase the cyclic loading. Neverthe-
less, the approach supports the development of the model and assessment of damage
accumulation due to the influence of fully non-linear waves over a shorter duration.

3 Results

This section presents the initial results of this ongoing development of a meta-model
for monopile fatigue estimating. The results focus on the assessment of the short-term
damage including the influence of wave nonlinearities (§3.1), accumulated damage
using a traditional lumping method (§3.2), the development of the machine learning
based meta-model (§3.3) and initial results of its application (§3.4).

3.1 Short-term damage

Figure 2a presents the damage fraction based on the simulated datasets for linear
and fully non-linear waves under comparable wind-wave properties, for both parked
and operational turbine conditions. When the turbine is parked, the effect of wind
speed is negligible and the influence of wave properties dominate, whereby larger
significant wave heights correspond with the greatest damage. This is indicated by
the distribution of the red scatter plot being skewed significantly towards larger FNL
values. Similar, although less severe, behaviour is also seen in operational conditions.
The larger magnitude cluster of damage values in Figure 2a show a significant peak
in the overall damage value occurring in the region of 1.3 to 3× 10−3 corresponds to
the values around the rate wind speed, regardless of wave conditions. This identified
the conditions that are wind- rather than wave-dominant.

A deeper insight into the operational conditions is given in Figure 2b, showing the
distribution of the difference between damage from fully nonlinear and linear waves,

∆Dj,hr = D
(FNL)
j,hr −D

(L)
j,hr, for operational conditions across the wind speed, wave pe-

riod, and wave height. Here it can be seen that the importance of wave nonlinearities
increases at larger magnitude peak wave heights. This is also valid for the parked
turbine conditions (not shown). Although, when the turbine is operational, there
is an additional dependence on the wind speed, with the largest damage difference
occurring at the turbine rated wind speed and slightly lower (Figure 2b).
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Fig. 2. (a) Comparison of environmental condition hourly damage fractions Dj,hr for fully
non-linear (FNL) and linear (L) wave kinematics for operational (black) and parked (red)
conditions, and (b) the difference in hourly damage ∆Dj,hr between FNL and L wave
kinematics when the turbine in operational, plotted over wind speed (Vw), wave period (Tp)
and wave height (Hs).

While the relatively calm environmental conditions result in comparable values
regardless of the simulation wave kinematics, fully non-linear wave kinematics result
in greater damage as wave conditions become increasingly rough, even more so for
parked turbine, congruent with previous research [14, 22, 27]. These results indicate
that linear wave kinematics will result in an underestimation of accumulated damage
over time, and therefore the wave kinematic data simulated with fully non-linear
model is implemented in the development of the meta-model described in this paper.

3.2 Accumulated damage

The accumulated damage between linear and fully non-linear waves is compared us-
ing measured environmental data over 1-year period (31-Aug-2019 to -2020) from
research platform FINO1. Wave and wind data was re-sampled to produce corre-
sponding hourly averages, and lumped based on Kühn [13] following preservation of
wave height given that wave height was determined as the leading characteristic in
§3.1. A worked example is given in [1]. Data above 26 ms−1 is omitted herein due to
insufficient measurements to accurately determine representative loading conditions.

The data lumped into 13 load cases is presented in Table 1, along with their
probability. Additional numerical simulations as per methods in §2 provide the cor-
responding damage fraction values given in Table 1. The turbine is considered opera-
tional when wind speeds are within the cut-in (3 ms−1) and cut-out (25 ms−1) limits
of the reference turbine, thus fault and maintenance downtime effects are absent.
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Table 1. Lumped dataset based on FINO1 measurements, and corresponding simulated
yearly damage fractions, and percentage difference (%diff.) between implementation of fully
non-linear (FNL) and linear (L) wave kinematics.

Load
Case

Vh Hs Tp %/year D
(FNL)
j,year D

(L)
j,year %diff.

1 2 1.04 4.68 9.05 5.91× 10−3 6.22× 10−3 5.09
2 4 1.20 5.15 17.51 1.44× 10−2 1.51× 10−2 5.24
3 6 1.42 5.82 18.80 7.43× 10−2 7.61× 10−2 2.47
4 8 1.74 6.68 17.21 1.08× 10−1 1.10× 10−1 2.27
5 10 1.95 7.20 10.89 1.51× 10−1 1.53× 10−1 1.40
6 12 2.20 7.79 7.92 9.52× 10−1 9.54× 10−1 0.27
7 14 2.42 8.25 6.60 2.38× 10−2 2.43× 10−2 1.79
8 16 2.68 8.76 4.45 1.54× 10−2 1.55× 10−2 0.94
9 18 3.23 9.63 3.04 1.76× 10−2 1.78× 10−2 0.98
10 20 3.66 10.16 1.64 1.06× 10−2 1.05× 10−2 1.26
11 22 4.25 10.63 1.01 8.35× 10−3 7.95× 10−3 4.93
12 24 4.70 10.80 0.58 6.77× 10−3 6.32× 10−3 6.84
13 26 4.98 10.83 0.17 8.87× 10−4 6.66× 10−4 28.46

98.87% 1.39 1.40 -

The results presented in Table 1 reveal the accumulated damage over the example
year Dj,year to be remarkably close when comparing the use of linear and fully non
linear waves kinematics, with a difference of only 0.71%. Inspection of the loading
cases reveals differences of up to 7 %, with the exception of case 13, which reveals
linear waves result in lower damage by ∼28 % which is likely attributed to the
largest wave height, especially in combination with parked wind turbines as wind
speed is above the cut-out speed in agreement with the results in §3.1. This example
is dominated by the damage produced near the rated wind speed (12 ms−1) where the
negligible difference in damage due to wave kinematic type is recorded at moderate
wave heights, thus negligible difference in accumulated damage value.

It was previously shown that that the inclusion of FNL wave kinematics is most
critical at larger significant wave heights, yet the lumped load cases do not include
significant wave heights over 5 m. Furthermore, over 70% of yearly data falls within
loading cases 3 to 10, which only express a differences of up to 2.5%. This loading
case simplification provides reasoning for the similar damage values regardless of
wave kinematics. Given the conditions associated with higher magnitude damage
are not discretely included in lumping methods, it is posed this will result in an
underestimation of accumulated damage. These findings motivate the use of fully
non-linear waves in the application of the previously introduced CNN meta-model
and the use of hourly data to provide more accurate temporal damage estimations.
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3.3 Meta-model development and evaluation

The simulated damage fraction for each environmental-operational scenario using
fully non-linear waves was used to train a deep learning meta-model based on Con-
volutional Neural Networks (CNN) using the Python libary Keras. The deep learning
model is a CNN with a single convolutional and max pooling layer, using 64 filters
and a kernel size of 7, two dense layers (with 64 and 32 units), a ReLU activation
and an Adam optimiser with mean-squared error loss function. Dropout is applied on
our max pooling layer (0.2) and the first dense layer (0.1). The model is trained over
100 epochs with a batch size of 64. The training inputs and outputs were normalised
and implemented with a random train-test split of 80%-20%. Inverse scaling was
applied to output real values of Dj,hr during model application. Figure 3a presents
the model’s prediction accuracy when evaluated against the reserved test data by
plotting normalised predicted values over normalised simulated models (black dots)
while the one-to-one fit is marked with a red dashed line. The two clusters of values
corresponding to the main loading and the higher loading at rated wind speed are
present, just as previously in Figure 2a. This model fit results in a coefficient of deter-
mination (r2) of 0.982. Figure 3b presents the model learning mean-squared-error for
the training (black line) and validation (red line), illustrating a converged application
of a suitable training duration and achieved accuracy.

Fig. 3. (a) Model accuracy - normalised predicted Dj,year values over normalised simulated
Dj,year values, with red dashed line denoting 1:1 fit. (b) model loss over simulated time for
both training (black) and validation (red).

3.4 Meta-model application

The machine learning based meta-model is demonstrated through application of the
same 1-year duration measured hourly metocean data from research platform FINO1
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as described in §3.2. This data was inputted into the CNN meta-model, resulting in
hourly predictions of damage fraction based on the metocean data. Figure 4 presents
the cumulative damage over this period, which can be continually updated on an
hourly basis throughout the wind turbine lifespan.

The cumulative damage throughout the example year determined by the meta-
model is 1.41, demonstrating good agreement with the data lumping approach of 1.39
(Table 1). This supports the traditional data lumping approaches for an operational
turbine, yet the effects of downtime and parked turbines on accumulated damage
values requires further evaluation. Fundamentally, the results offer a promising new
approach to obtaining high temporal frequency updates on monopile damage through
the use of a meta-model.

Fig. 4. Cumulative damage determined based on machine learning and measured hourly
metocean data.

Although substantial computational time is required to conduct initial simula-
tions for a specific turbine across all environmental conditions for training of the
machine learnt meta-model, the requirement is negligible in respect to the wind-farm
lifetime. No further modeling would be required through time, and it would be pos-
sible to obtain damage estimates using hourly measured environmental data. Here
the concept of implementing machine learning in monopile fatigue prediction is pre-
sented. Future work will evaluate multiple years of historic data, to provide a broader
understanding of temporal variation in damage throughout an annual year, as well
as incorporate non-operating (hence more prone to wave nonlinearities) wind turbine
configurations at a wider variety of sea states due to downtime or faults. Application
of this approach to a real-world case would require cross-validation against direct
measurements to validate the accuracy of output damage values. Moreover, there is
a further need to explore model variability and use of alternative neural networks
and the possibility of improving training efficiency.
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4 Concluding Remarks

This paper presents the development of a meta-model for offshore wind turbine
monopile fatigue, its comparison to damage assessed with lumped sea state method,
and an investigation into the importance of nonlinearities in wave kinematics. The
implementation of numerical simulations and deep learning has supported assessment
of monopile damage, and the influence of including fully non-linear waves.

It is shown that the inclusion of fully non-linear waves results in larger magnitude
damage fraction values than linear waves, although the difference is most substantial
during waves with largest wave heights. When the turbine is operational, the effects of
wind speed amplify the differences around the rated wind speed. While the differences
associated with the inclusion of fully non-linear waves distinct during assessment of
short-term damage, the effects are not minimal when evaluating accumulated damage
measurements. This is due to the dominance of conditions with limited difference in
damage fraction value due to use of higher order wave kinematics.

Advances in fatigue calculations are implemented through the benefits of deep
learning, notably by presenting an approach to rapidly assess fatigue at any given
point in the monopile structure lifespan. This is of particular value to operational
and maintenance decisions, along with evaluation of the remaining useful lifetime.
Furthermore, the high temporal capacity of the presented model will support future
assessment on the effect of sequential cyclic loading and non-linear damage accumu-
lation. The presented methods and model may now be adapted and implemented to
evaluate the actual fatigue of an existing real-world turbine to provide a compari-
son between the predicted fatigue versus accumulated during development, and an
updated assessment of fatigue based on measured conditions. While the meta-model
presented can reproduce the damage based on the numerically simulations, real-world
application requires cross-validation against direct measurements (i.e. strain gauge
data) to assess accuracy of real damage values. Future work is also required to im-
plement turbine downtime within the lifetime, along with assessment of potential of
meta-model variability.
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