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Abstract When training models for visual anomaly detection, typically, a dataset is
collected and then annotated offline. Even if collecting raw data is relatively cheap,
annotations are expensive, especially if they require human expertise. We therefore
propose a novel interactive learning framework that combines active learning with
natural language interaction to minimise the amount of annotated training data and
allow for refined human expert feedback that may be leveraged in the learning pro-
cess. In our initial experiments on wind turbine drone images, we demonstrate the
effectiveness of active learning for anomaly detection when using ground truth la-
bels, and assess the impact on learning when collecting labels from ‘experts’ versus
‘non-experts’ using our dialogue system. In addition to anomaly labels with confi-
dence scores, we collect and analyse natural language explanations, which may be
used to improve both anomaly detection performance and explainability.

1 Introduction

Deep learning (DL) models for anomaly detection in images rely on large amounts
of training data, which requires labour intensive human annotation. To train expert
systems for specialist industrial tasks, domain expertise is necessary, which incurs a
high cost for labour. User friendly programs, such as VGG Image Annotator (VIA)
[5, 6], have streamlined the task as much as possible, allowing users to click and
drag bounding boxes and select classes, but the task remains time intensive, and
puts a heavy burden on the annotator.
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Active and Interactive Machine Learning (AL and IML) are human-in-the-loop
(HITL) techniques [23], which aim to make training more efficient and adaptive by
involving human experts more closely in the training process. Both have been shown
to be successful in object detection [17, 13] and anomaly detection tasks [36].

Our aim is to take this one step further by introducing a dialogue system to sup-
port natural language interaction between the learning agent and the human expert.
This has the potential to both improve the user experience and explainability of the
system, as well as offer a pathway to leverage pre-trained language models in the
anomaly detection task, taking inspiration from [24, 25]. Specifically, we propose
a methodology for interactively training an anomaly detection model, using a dia-
logue system to collect labels from a human expert. We validate the system on a
task from the wind energy industry, and simultaneously use the dialogue system to
elicit natural language explanations for the provided labels.

Our main contributions are as follows:

1. We propose a novel task on interactive learning for anomaly detection that fea-
tures a dialogue system for querying human oracles.

2. We establish the effectiveness of our model, comparing the use of ground truth
labels with interactively obtained labels from both experts and novice users.

3. We present and release a novel dataset of human-system conversations, featuring
label assignments with confidence scores and natural language explanations. 1

2 Background

In this section, we briefly outline related work in visual anomaly detection, interac-
tive machine learning, and language-assisted object detection.

2.1 Visual Anomaly Detection

Within the field of computer vision, anomaly detection has been an area of rapid
development, with applications in medicine [39], manufacturing quality control
[14, 42, 12, 3], and other areas [30, 43, 2]. Deep CNN (DCNN) based methods
[41, 7, 14, 33, 16, 18, 35], have largely superseded other methods for anomaly de-
tection, due to their superior performance and ability to be trained on relatively little
in-domain data by fine-tuning pre-trained models. However, training DCNN-based
anomaly detectors still requires large amounts of annotated data, which is labour-
intensive and expensive. To further reduce the need for annotated data, AL and IML

1 Raw and cleaned human-system conversations can be found in our Kaggle repository at
https://www.kaggle.com/datasets/54ceee996fc19201769127077d0f307f1cf3ec93d0cfdc7bf120e253963d4f96.



approaches for anomaly detection have been proposed [40, 2, 43], and studies have
trialled the use of NLP tools to generate ground truth from existing descriptions
[39, 25]. To our knowledge, these approaches have not yet been combined.

2.2 Active/Interactive Machine Learning

AL and IML are Human-in-the-Loop methods that aim to involve the human expert
more closely in the learning process, thereby reducing the amount of annotation
data, and overall make the learning process more efficient and flexible in general
[23]. [4] present a structural behavioural model of a generalised IML system, and
provides recommendations for setting up a successful IML framework. [28] is fo-
cused on Interactive Machine Teaching (IMT), which relies on an iterative process
in which a human assists an ML system in learning a task.

AL and IML methods have also been applied with some success to object and
anomaly detection tasks [38, 1, 22, 20, 21, 19, 8]. [36] compares a range of AL and
ML approaches on an anomaly detection task, finding that their AL model outper-
forms traditional methods. [40] uses instance-level uncertainty to rank images for
sampling the most valuable images for annotation. In industrial tasks, [43] presents
an AL framework for the detection of weld defects on a pipeline, using value based
sampling, and [2] uses an IML-trained U-net to label patches in asphalt.

2.3 Natural Language and Vision

Many language-assisted object detectors extract spatial information and features
from descriptions and reports. [34, 10, 15, 24, 25, 39] combine features learned
from images and from text-based descriptions to improve training of object and
anomaly detectors, thus requiring fewer annotated images. In contrast to the above
approaches, we aim to elicit and exploit natural language descriptions from human
experts in an interactive setting, envisioning a system that can generate explanations
for its predictions, a user who can provide free-form feedback, and information can
be clarified across multiple dialogue turns.

3 Domain and dataset

We use data from the Nordtank DTU dataset [32] to validate our model. This dataset
contains UAV-gathered images of wind turbines exhibiting damage, taken over two
years. 1000 images from a cropped version of the 2018 dataset were reviewed
and annotated, resulting in 229 images containing 638 instances of anomaly. The
anomalies fall into five main classes: corrosion (204 instances), missing paint (110



instances), missing vortex generators (26 instances), cracks (13 instances), and un-
known (signs of repair, marks; 284 instances). Some examples are shown in Fig. 1.

Fig. 1 Example annotations
from the cropped Nordtank
DTU dataset, showing miss-
ing vortex generators (top
left), corrosion (top right),
missing paint (bottom left),
and cracks (bottom right).

During testing, users were shown an image with a bounding box, and asked
whether any anomaly was present in that bounding box, regardless of class. This
simplification to binary labels was to make the task easier for the users, and will be
expanded to the more complex multi-class setting in future experiments.

4 Methodology

The proposed system is based on an AL querying approach, with a dialogue system
to elicit labels for the selected images from a human expert using natural language.
The collected labels are then used to iteratively train a CNN-based anomaly detector.
The overall IML framework is summarised in Section 4.1, whereas the dialogue
system is described in more detail in Section 4.2.

4.1 Interactive Learning Framework

The IML framework is illustrated in Fig. 2. The IML Agent selects images for hu-
man annotation based on a querying strategy, and iteratively trains the anomaly
detection model using the collected annotations. The proposed querying strategy
consists of selecting images with low-confidence predictions by the current trained
model: first, images are ranked based on the highest confidence prediction per im-
age, and then the five lowest ranking images are selected to be reviewed by the
human expert, querying up to five predicted anomalies per image.

The anomaly detection model itself is a Faster R-CNN [29] with a ResNet-50v2
[9] backbone network. This model has been shown to be effective in previous tasks



[31], and can be easily set up and fine-tuned for new applications. We verified its
suitability for the current task empirically.

Fig. 2: A flowchart of the key components of the Interactive Machine Learning
system, including the learning agent and the dialogue system.

During each stage of training, a batch of five images are selected, based on the
model’s current predictions and the query strategy. These images and current pre-
dictions are then reviewed either by a simulated user (using the ground-truth label)
or human user, resulting in a new batch of training data. The model is then retrained
on the collected training data for 500 epochs, using a batch size of 4 images, and
optimised using AdamW with a learning rate of 0.00001. Precision, Recall, and F1
scores are calculated on the test data, allowing a balanced view of the performance
of the model. Predictions are considered true positives if the Intersection over Union
(IoU) with the ground truth bounding box is over 0.5.

4.2 Dialogue System

The dialogue system is designed to deliver prompts and receive information in a
natural conversational manner, with the goal of efficiently gathering high quality
annotations from a human expert. The dialogue system was built using Uber’s Plato
Dialogue system platform [27]. A flowchart of the components is shown in Fig. 3.



Fig. 3: Flowchart of the key components of the Plato dialogue system, including the
NLU, DM, NLG, Database, and the human user.

To suit our initial experiments in this new application domain for dialogue, we
developed a modular system with rule-based components for natural language un-
derstanding (NLU), dialogue management (DM), and natural language generation
(NLG). The conversational data we have collected in the experiments can be used to
improve these components, possibly replacing them with statistical models. As the
interactive anomaly detection task grows in complexity, it will become important to
use more scalable data-driven methods.



For the NLU component, we use simple pattern matching to recognise the yes/no
answers used for recording binary labels for the presence/absence of damage. As
we move to the multi-class scenario, this will be extended to recognising damage
classes. The DM tracks the state of the conversation, for example to enable con-
firmation of user provided labels, and queries and updates the database that stores
the images, predictions, and user provided labels. The NLG component currently
uses simple rules to generate natural language realisations of the response actions
selected by the DM, for example, to ask the user to label a bounding box in an im-
age, to confirm a user provided label, or to request an explanation. At this stage,
an easily interpretable rule-based dialogue system is preferable over a data-driven
system, allowing us to focus on the interactive learning functionality alone. The data
we collect using this system will be used in more advanced future version.

5 Validation

To validate the proposed system, we ran an AL task where users were queried on
predictions made on images from the Nordtank DTU dataset [32]. Besides the hu-
man users, we also included a simulated user, which provides ground truth labels
from the annotated dataset. Our experiments were focused on determining how the
querying strategy and the dialogue system would impact how effectively users could
provide input to the model training. The users reviewed binary predictions made by
the partially trained model, confirming or negating the presence of an anomaly in a
bounding box. They also provided a confidence score and an explanation for each
of their judgements, which were not used in the training process, but collected for
analysis and future improvements.

We recruited 20 postgraduate students to take part in our experiment, split into 10
‘experts’ and 10 ‘non-experts’. The ‘non-experts’ were computer science students,
who were only given basic instructions on how to use the dialogue system to do the
task. The ‘experts’ were wind power students, who were given an additional briefing
on the specific types of anomaly that can be expected in the annotation task, along
with examples. Every participant interacted with the dialogue system to review the
predictions made on 5 images, resulting in a pool of 50 images per group. To ensure
a direct comparison between the training scenarios at each stage of training, the
human users annotated the same images that were selected during active learning
with the simulated user. It should be noted, however, that in a more realistic setting,
images would be selected after each batch based on predictions made by the trained
model in a particular scenario, and therefore the batches may be different from those
in another scenario.

Following the above setup, we report results for the following 4 scenarios:

1. Training on full ground truth data for images which have been selected by the
querying agent.

2. Training on labels provided by the experts.



3. Training on labels provided by the non-experts.
4. Training on ground truth labels for randomly sampled images.

We evaluate our models in terms of F1 score, rather than accuracy, due to imbal-
ance in the dataset between the background areas with no damage and areas with
damage. During the AL task, we calculate the precision, recall, and F1 scores at
each batch of training to track the progress at each stage.

6 Results

We report results in terms of anomaly detection performance during training, and
provide a quantitative and qualitative analysis of the interactions that provided the
training data for the anomaly detection model.

6.1 Anomaly detection results

In each of the 4 conditions listed in Section 5, the models were trained for 500
epochs between batches of 5 images. The results in terms of precision, recall, and
F1 score are plotted in Fig. 4.

In Fig. 4a, the model trained by active sampling from the ground truth reaches its
best precision score after 6 batches of images, whereas random sampling requires
10 batches to reach equivalent precision, i.e. a reduction of 40%. The expert and
non-expert trained models show more fluctuation, which indicates more noise in the
training data, as may be expected when using labels from human annotators. Both
eventually reach comparable precision scores to the active sampling from the ground
truth, with the expert trained model outperforming the non-expert one throughout
most of the training.

As shown in Fig. 4b, the ground truth active sampling and random sampling
models both achieve their maximum recall after a few batches, before dropping off
as the precision increases. Where the random sampling model’s recall keeps get-
ting worse, the ground truth active sampling model’s recall does not deteriorate as
much, and even improves significantly towards the end of the training. In contrast,
the expert and non-expert trained models show a more gradual increase in recall,
both eventually reaching similar levels to the random sampling model. As shown in
Fig. 4c, the active sampling from the ground truth trains rapidly, and clearly outper-
forms random sampling, demonstrating that the active learning strategy is effective.
The expert and non-expert trained models show slower training, reaching compara-
ble results to the random sampling by the end of the training. This shows that the
effectiveness of active learning depends on the expert level of the human annotator.
In a real world target scenario, the human expert can be assumed to provide higher
quality labels than the recruited participants in our experiment.



(a) Precision results. (b) Recall results.

(c) F1 score results.

Fig. 4: Precision and recall plots of the ground truth sampling, expert, non-expert,
and random sampling trained models during training.

Fluctuations seen in the training results, especially the reduced recall and F1 at
batch 8 exhibited by the ground truth and random sampling are considered to be due
to examples in that batch. Upon inspection of batch 8, it was found that it contained
11 instances of damage, far more than most other batches. It is thought that the
significant increase in training data caused the model to not be satisfactorily trained
on the new data after 500 epochs, which would explain the drop in performance.

The scores exhibited in this task are lower than in many object and defect detec-
tion tasks. It is thought that this is due to the small scale of anomalies in the images
of this particular dataset, especially the crack and missing vortex generator classes.
Previous work on this dataset exhibited scores in line with those achieved by our
system [31]. In this study, we have focused on demonstrating the effectiveness of
active learning when faced with limited data, and have collected natural language
explanations that can be used to improve detection performance in a future multi-
modal version of the model.



6.2 Dialogue Analysis

An example conversation from the experiment is shown in Fig. 5, contrasting expert
and non-expert judgements for a selected image. The example is a false prediction,
where the presence of damage was to be negated; in this case, both expert and non-
expert thought there was damage, thus introducing noise in the training data that
will have affected performance of the trained models.

Expert Non-Expert

SYSTEM
Does the bounding box shown
contain any damage?

USER Yes Yes

SYSTEM
Okay, confirming bounding
box as showing damage,
please provide an explanation.

USER Crack in box Damage visible

SYSTEM
Please score how confident
you are from 1-5, where 1 =
Least certain, 5 = Most certain.

USER 4 3

SYSTEM
Thank you for your feedback.
Please type ‘next’ to see next
image.

USER Next Next

Fig. 5: Example interactions with an expert and a non-expert user, discussing the
same image.

Expert and non-expert users took comparable amounts of time to complete the
task, ranging between 2 and 4 minutes to review batches containing 15-25 predic-
tions, corresponding around 10 seconds per predicted instance of anomaly, including
explanations and confidence scores.

6.2.1 User Scores

Table 1 shows the distribution of the confidence scores provided by the expert and
non-expert users. As expected, the experts were generally more confident about their
judgements than the non-experts, whose confidence scores were more varied.

Table 1: Comparing confidence score frequencies between experts and non-experts.

Score 1 2 3 4 5 Mean

Experts 1 1 11 21 102 4.63
Non-experts 0 4 21 35 76 4.34



6.2.2 User Explanations

The user explanations were analysed in terms of length (number of words) and the
frequency of words which occurred more than 5 times, filtering out stop words such
as ”the”. The frequency of the lengths of explanations are shown in Fig. 6, and the
frequency of recurring words are shown in Fig. 7.

Fig. 6: A bar chart comparing occurrences of the length of user explanations, be-
tween the experts (blue) and non-experts (orange).

The results show that the user explanations were fairly short, with non-expert
users providing shorter explanations than expert users. The average length of ex-
planations was 3.53 words for experts, and 3.15 words for non-experts. This is ex-
pected, as the briefing before the experiment provided the expert users with the
vocabulary to give more elaborate explanations for their judgements.

When analysing the frequency of recurring words, it was found that the experts
used more specific language related to the task, such as “damage”, “blade”, and
“box”, while non-experts used less technical terms such as “part” and “shadow”.
This was expected, given the experts greater technical knowledge of the task. The
words “box” and “damage” were found to be highly common, with utterances stat-
ing “no damage in box” being common responses to false positives.

When reviewing the user inputs qualitatively, we find that explanations associated
with false positives often provide little detail, such as “no damage in box” or “cant
see any damage”. In some instances, the user describes a feature in the image that the
model may have incorrectly classified as damage, for example “shadow in bounding
box” or “part of logo or company name”. Explanations associated with true posi-
tives often include a general confirmation (e.g., “damage highlighted”), which adds



Fig. 7: A bar chart comparing occurrences of filtered words recurring more than 5
times in the user explanations, between the experts (blue) and non-experts (orange).

little value. More descriptive explanations often include the type of damage (e.g.
“a couple of cracks in box”, “it looks like rust”), or may also be a more general
description of what the bounding box in the image looks like (e.g. “darker coloured
area”), which contains more valuable information. Explanations when the user is
unsure often describe the potential damage (“could be part of the blade or crack”)
or explain the uncertainty (“some imperfection but small so could be due to image
quality”). If these explanations are to be used to aid in the anomaly detection task,
then the more detailed and valuable explanations will provide more information.
Descriptive explanations that refer to specific features could potentially be used to
refine both region proposal and classification in a multi class task.

7 Discussion

In this section, we provide further discussion of the interactive learning results and
the collected user explanations.



7.1 Interactive Learning

In our experiments, the model trained by active sampling from the ground truth
showed the best performance overall. The results clearly demonstrate the benefit
of sampling ground truth labels based on low-confidence model predictions rather
than random sampling. However, this setting corresponds to a noise-free interactive
learning setting where a human expert provides perfect annotations.

In our setting with recruited graduate students, grouped into ‘experts’ and ‘non-
experts’, some noise in the user-provided labels was anticipated. Indeed, we found
that the experts showed only 87.5% agreement with the ground truth, and the non-
experts even lower, at 77.8%. This level of noise clearly affected the training results.
However, we envision that end-users of the system will be fully trained wind turbine
engineers that can provide much more reliable labels, which may also be further
improved by using a committee of experts.

Overall, the results of the AL task on the ground-truth and user-input data showed
that the proposed system has the potential to reach better performance than random
sampling with fewer training examples, and with less human effort required than
when annotating images by plotting bounding boxes. Training could be further im-
proved by incorporating user provided confidence scores and explanations.

We believe that the high user confidence scores are likely due to the prevalence
of false positive predictions in the earlier stages of training, which that can be easily
labelled by the users as such (although Fig. 5 shows a more challenging case). The
slightly higher scores from the experts indicate that their domain knowledge made
them more confident compared to the non-experts.

When considering the effect of our system on annotation times, our system allows
faster annotations than GUI-based click and drag annotators, with an average time
of around 10 seconds per instance. Although reducing annotation times was not
the focus of our experiments, [37] states annotation times of up to 35 seconds per
instance when labelling through conventional means, suggesting that our approach
achieves a significant reduction.

7.2 User Explanations

Explanations provided by experts were generally more informative than those pro-
vided by non-experts. The briefing given to the experts clearly led them to use more
domain-specific terminology and more detail, adding value to their initial binary
anomaly judgement.

The overall tendency towards shorter explanations could be partially attributed
to the prevalence of false positives, especially in the earlier batches. In many such
cases, the users tended to give short explanations like “nothing in box”. We also
found that some users gave mostly long responses, while others were more mono-
syllabic, which suggests that explanation length is partially due to personal prefer-
ence.



For a future version of the system that can exploit explanations in anomaly de-
tection, we expect that more descriptive explanations will be required. This may be
done by improving the experimental design or the dialogue system itself, but we are
also looking into the use of multimodal Large Language Models (LLMs) such as
GPT4 [26] that have emerged recently.

As a preliminary test, we have taken a small sample of images from our dataset
and passed them to GPT4 with the prompt “Does this close-up of a wind turbine
show any damage?”.2 For example, the top right image in Fig. 1 gives the following
response:

“Yes, the close-up image of the wind turbine does show some damage. The white paint on
the turbine is chipped and there is visible rust. This could potentially affect the performance
and lifespan of the wind turbine. It’s recommended to have it inspected and repaired by a
professional to ensure its optimal operation.”

Although some of the generated descriptions are impressive, careful prompting
and post-processing will be required to ensure accuracy of the responses. For exam-
ple, the missing vortex generators in the top left image in Fig. 1 were not noticed:

“From the close-up image of the wind turbine blade, it appears to be in good condition with
no visible damage. The blade is white in color and has a smooth surface. [. . . ]”

Hallucinations in generated text have been identified as a significant issue in LLMs
by a range of sources[11, 26], and can present plausible outputs that may be difficult
to differentiate from factual responses. Therefore, having a human expert in the loop
will always be essential in this kind of application.

8 Conclusion

In this paper, we have presented a novel task that uses a dialogue system to assist
in data annotation for highly expert-driven tasks. We demonstrated feasibility in the
domain of damage detection on wind turbine blades. Our validation study showed
that the querying strategy for active learning on ground truth data was effective, and
that user provided labels for active learning resulted in a comparable performance
to passive learning on ground truth labels. We also collected and analysed natural
language explanations from the users for their annotations, with the aim to develop
a future version of the system that leverages such explanations to enhance anomaly
detection performance and explainability.

Future work can extend the dialogue system to allow users to review and correct
class predictions, and add previously unseen classes to the detection model, taking
advantage of human ability to recognise new classes quickly. The dialogue system
could be improved to better reflect how humans interact with it, using the scores and
explanations gathered in the conversations to create a data-driven version, which
may be more flexible and adaptable to other tasks. We will also look further into

2 Using Bing enterprise, 15/16 Nov 2023.



using LLMs for data augmentation, with particular focus on image descriptions and
explanations of detected anomalies.
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