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Abstract

Climate change will affect how water sources are
managed and monitored. Continuous monitoring
of water quality is crucial to detect pollution, to
ensure that various natural cycles are not disrupted
by anthropogenic activities and to assess the effec-
tiveness of beneficial management measures taken
under defined protocols. One such disruption is al-
gal blooms, in which the population of phytoplank-
ton increase rapidly, affecting biodiversity in marine
environments. The frequency of algal blooms will in-
crease with climate change as it presents favourable
conditions for the reproduction of phytoplankton.
Machine learning has been used for the early de-
tection of algal blooms previously, with the focus
mostly on single closed bodies of water in Far East
Asia with short time ranges. In this work, we study
four locations around the North Sea and the Irish
Sea with different characteristics predicting activity
with longer time-spans and explaining the impor-
tance of the input with respect to the output of the
prediction model. This work aids domain experts
in monitoring potential changes to the ecosystem
over longer time ranges and taking action when
necessary.

1 Introduction

Harmful algal blooms (HABs) occur when the pop-
ulation of phytoplankton increases rapidly, causing
environmental changes such as sunlight blocking
and oxygen depletion [14]. These changes affect the
public health, since the use of water and fish affected
by these blooms pose a health risk [10]. HABs occur
due to eutrophication caused by nutrient overload.

*Corresponding Author: O.Dagtekin-2019@hull.ac.uk

The occurrence of algal blooms involves the cre-
ation of oxygen deprived zones due to the extreme
number of deceased plants and animals, resulting
in dead zones with no ability to support life which
may require external action to revert [5].

With increasing temperatures due to climate
change, it is expected that the frequency of algal
blooms will increase and will be observed in new
regions [27]. In addition to ecological impacts, the
occurrence of algal blooms has negative economic
impacts. These include drinking water treatment
costs and an increase in the cost of preservation of
biodiversity [9]. Lower economic activity, related to
tourism and fisheries, is observed in locations where
algal blooms occur frequently [2, 15].

To prevent this phenomenon from occurring, pre-
ventive measures could be taken which include early
detection models that benefit from frequent in-situ
data and harness the power of machine learning.

Modelling algal blooms has several challenges.
Algal blooms are extreme events; therefore posi-
tive labelled samples are extremely low (3-5%) in
a dataset. This issue needs to be addressed dur-
ing training with methods such as SMOTE or label
weighting and model evaluation with F1 score. Deep
learning models require vast amounts of data for
training which is solved by continuous and frequent
monitoring. The occurrence of algal blooms is in-
herently complex as the underlying mechanism is
influenced by many factors such as nutrient intake
of nitrates and phosphates through industrial pol-
lutants or fertilizers, the water temperature, and
available light.

In this work, we propose a novel model that im-
proves the detection of anomalous activities in cer-
tain locations of the North Sea and the Irish Sea
using in-situ data and a flexible labelling method
with varying ranges of detection and a longer range
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of time which was not taken into account in the ma-
jority of the approaches, with transformer networks
and convolution operations. Our approach gener-
ates a possible sequence at day x+i , i ranging from
1 to 7, using observations at day x with a represen-
tation learning approach and filtering the necessary
parts of the generated sequence to predict a bloom.
In addition, we explain the reasoning behind the
predictions using SHapley Additive exPlanations
(SHAP) to aid domain experts in understanding the
predictions. The scope of this work aims to detect
the beginning of these blooms due to the mechanics
of the phenomenon. We have observed that using a
representation learning approach results in a better
model, performing 5% better than current methods
for this study area.

2 Related Work

The majority of approaches apply thresholding to
categorize labels and forecast future behaviour or
apply regression to the problem of HAB detection
using dissolved oxygen or chlorophyll-a (chl-a) as the
target variable, both of which increase with higher
photosynthetic activity from algae, as chlorophyll-a
is used to capture sunlight and carry out photosyn-
thesis to produce oxygen and glucose. The chl-a
concentration will increase during an algal bloom
due to increased photosynthetic activity, whereas
the oxygen concentration will increase initially with
high photosynthetic activity and drop afterwards
due to the increasing decomposer population. It
should be noted that the behaviour of inland waters
and seawater differ from one another, as seawater
bodies can act as large reservoirs so they are less
susceptible to change.

The detection time-spans of the current ap-
proaches are usually short, ranging from 12 hours to
4 days. [26] uses temporal attention combined with
Long Short-Term Memory (LSTM) to predict the
chl-a value at most 12 hours ahead in Fujian, China.
[23] predicts the chl-a value 1 to 3 days ahead, using
a combination of an ensemble of Artificial Neural
Networks (ANNs) with Discrete Wavelet Transform.
[7] uses sensory data to predict the chl-a in certain
locations in South Korea with LSTMs. They aimed
to predict the chl-a concentration a day ahead and
4 days ahead using this approach. [19] compares
ANN, generalized regression network and Support

Vector Machines (SVM) in the context of predicting
chl-a values 7 or 14 days ahead for Tolo Harbour,
Hong Kong. [30] uses Extreme Learning Machine
to predict chl-a values 7 days ahead along several
weirs on the Nakdong River, South Korea.

The most common approaches for algal bloom de-
tection are Random Forests (RFs), SVMs and ANNs.
[28] uses RF to predict the chl-a concentration in
Urayama Reservoir and Lake Shinji, Japan. [29]
uses sensory data to predict HABs using AdaBoost
with SVM and RF in Yuyuantan Lake, China. [8]
uses ANNs combined with correlation and feature
selection to predict the dissolved oxygen value in
Lake Juam, South Korea. [31] predicts chl-a con-
centration in Dianchi Lake, China using Wavelet
Analysis and LSTMs. [21] uses ANNs and SVMs to
predict chl-a concentration in Juam and Yeongsan
Reservoir, South Korea, 7 days ahead. [6] uses a
merged LSTM model to predict chl-a values over
7-days ahead in Geum River, South Korea.

The study locations of this work differ from the
majority since most of the focus is divided between
Southeast Asia and the United States whereas our
study areas are the North Sea and the Irish Sea
[22]. The increased frequency of blooms results in
more focus on these areas [12, 1]. The majority of
the approaches use models, such as SVM, RF or
using LSTMs to analyse the temporal patterns in
the data. The approaches that classify the blooms
use static values or expert knowledge to classify
the responses as in the cases of [20] and [29]. Our
approach takes the context of the measurements
into account as factors such as temperature affect
the cellular activity and oxygen solubility in water
[18].

The proposed model predicts anomalous activity
in monitored locations ranging from 1 day ahead to 7
days ahead, using only data from a single day, with a
flexible labelling approach. Explanation models are
used to provide insight into how the input influences
the output of the model.

3 Dataset & Preprocessing

The data for this work was collected by ESM2 and
ESMx data loggers at four different moorings de-
picted in Figure 1. The data was collected as a part
of The National Marine Monitoring Programme
(NMMP) to monitor eutrophication regarding The
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Convention for the Protection of the Marine Envi-
ronment of the North-East Atlantic (OSPAR) and
Marine Strategy Framework Directive (MSFD) as-
sessments. The whole dataset was partitioned into
four fractions based on location. Each of the lo-
cations has different characteristics such that the
Liverpool buoy is near a maritime route, WestGab
buoy is near a wind farm, TH1 buoy is near the
delta of the River Thames and Dowsing buoy is in
the open sea. It is known that the chl-a concentra-
tion has been decreasing in certain hotspots in the
Southern North Sea [25].

The periodicity and the relationship between the
variables were analysed by [4, 3, 13] with varying
date ranges and locations by performing wavelet
analysis. The periodicities of variables depend on
the season and range between 6 hours to 24 hours.
The data consists of eight features; chl fluorescence
(fluors), turbidity (ftu), dissolved oxygen concen-
tration (o2conc), salinity (sal), temperature (temp)
and photosynthetically active radiation (PAR) at
depths 0, 1 and 2 meters (depth 0, depth 1, depth 2 ).
The majority of the data was collected at 20-30
minute intervals at each station. The data used
spans the range between Jan 2009 and Dec 2019.
Before being given as input, the data was normalized
with z-score normalization.

Figure 1: Locations of moorings

Depending on environmental conditions, the max-
imum amount of dissolved oxygen in a water body
can differ. The labelling process used the following
equation to calculate the maximum amount of dis-
solved oxygen concentration in the water given the

temperature and salinity [11]:

DO = In(A0 + A1T+A2T
2 + A3T

2+

A3T
3 + A4T

4 + A5T
5+

S(B0 + B1T + B2T
2 + B3T

3) + CS2)

(1)

where A0, ..., A5, B0, ..., B3 and C are coefficients of
the equation given in Table 1, S is the salinity and T
is In[(298.15−TO)(273.15+TO)−1] where TO is the
observed temperature value at time t. Algal bloom
starts with the increased algal activity in a body of
water which results in increased dissolved oxygen;
therefore, thresholding was used comparing the cur-
rent dissolved oxygen to the maximum percentage of
dissolved oxygen the water can hold at time t. If the
percentage was 5% above the maximum threshold,
the label was 1, else 0. The labelling process was
done per day based on mean dissolved oxygen. The
positive label percentages for each location was as
follows: 1.44% for TH1, 3.89% for Dowsing, 3.98%
for WestGab, and 11.44% for LivBay.

Coefficient Value
A0 2.00907
A1 3.22014
A2 4.05010
A3 4.944457
A4 −2.56847 ∗ 10−1

A5 3.887674
B0 −6.24523 ∗ 10−3

B1 −7.37614 ∗ 10−3

B2 −1.03410 ∗ 10−2

B3 −8.17083 ∗ 10−3

C −4.88682 ∗ 10−7

Table 1: Coefficients for Equation 1

4 Methodology

The baseline models for this work were chosen as
the SVM and RF as they were the most common
machine learning models for this task. We also in-
cluded an isolation forest (IF) method to observe
if anomalies could be identified in an unsupervised
fashion by identifying the differences between nor-
mal occurrences and anomalies. A convolutional
variational autoencoder (VAE) was also included to
observe if relevant information could be extracted
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from a latent space regarding these anomalies with
varying filter sizes. Luong attention model is also
included to observe if any improvements could be
made over LSTM models.

Transformer

1- D Conv

Linear

Output (0,1)

Input
(day x)

Target 
(day x+i)

Time2VecTime2Vec

Generated Sequence
(day x+i)

salinity

temperature

fluors

turbidity

PAR at 0,1 &
2 m

salinity o2 conctemperaturefluorsturbidity PAR at 0,1 &
2 m

Figure 2: Proposed model for predicting oxygen
thresholds. The input consists of all of the observed
variables at day x, whereas the target consists of all
variables except dissolved oxygen at day x + i. The
transformer generates the target sequence for day
x + i except the dissolved oxygen. The output is
a binary variable denoting if the average dissolved
oxygen at day x + i is below or above a threshold.

The proposed model (TF-Conv) consists of
four components: a time embedding component
(Time2Vec), a transformer, a convolutional layer
and a linear layer with softmax activation [24, 16].
The embedding layer maps the input to two do-
mains: time and frequency, the transformer is used
to generate the sequence for i day(s) ahead, which
ranges between 1-7. Separate embedding compo-
nents are used for input and target sequences as
they differ in their number of features. The input
is the measurements of day x and the target is the
measurements of day x+ i where i is the number of
days into the future ranging between 1 and 7. The
input data is used to generate the target observa-
tions using the transformer network. The target
variable is used during training to compute the loss
between the generated sequence and the ground
truth. Masking is used at the decoding stage of
the transformer. During training, teacher forcing
is used for the transformer. The ground truth is
given as the target value during decoding. During
testing, the previous output of the transformer is
used as the target tensor, initially, a tensor of ze-

ros of shape (1, seq len, num features) is given as
target. The convolutional layer is used for feature
selection. The generated sequence does not include
the dissolved oxygen to prevent the overfitting of the
convolution part of the model to only the dissolved
oxygen. The generated sequence is taken through a
1-D convolution layer to serve as a feature selector.
Lastly, the filtered observation is passed through
a linear layer to classify the sequence. The labels
were inversely weighted during training due to label
imbalance in the dataset. The final output of the
network is a binary variable that denotes if the daily
average dissolved oxygen is above the threshold or
not. Figure 2 illustrates the proposed architecture.
The training and testing procedures are provided in
pseudocode format in Algorithm 1 and Algorithm
2.

GradientShap1 was used as the explanation model.
For the explanation model’s baselines, we have used
the training data of the prediction model. The out-
put of the explanation model is per sample and per
time step. To give an overall view of the explana-
tions, we have decided to aggregate the explanations
per day and compute the averages per feature.

5 Results

The predictions are done i days into the future
given the observation at day x. i ranges between
1 to 7. 70% of data of TH1 buoy was used for
training, 30% for validation. This location was
chosen due to nutrient flow from the River Thames.
By modelling different nutrient concentrations, we
aimed to make a more generalised model for this
task. A single location was used for training to test
the generalisability of the model and to assess the
model performance with data gathered from various
locations with different properties. The other three
sites are used for testing.

The F1 scores of each day for each site are pre-
sented in Figure 3. The mean F1 scores for all test
locations are illustrated in Figure 4. F1 score was
used as the performance metric due to the issue
of label imbalance in the datasets. The weights
of recall and precision were equal for the F1 score.
An Adam optimizer was used for this task with
200 epochs and earlystopping with a patience of 15
epochs [17]. The embedding size of time2vec was

1https://captum.ai/api/gradient shap.html
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Algorithm 1 TF-Conv training (single batch)

Ensure: Xsrc = tensor of(seq len, batch size, num features)
Ensure: Xtgt = tensor of(seq len, batch size, num features− 1)

Xsrc ← time2vec(Xsrc)
Xtgt ← time2vec(Xtgt)
Xsrc ← tf encode(Xsrc)
Xsrc ← tf decode(Xsrc, Xtgt,masks)
Xsrc ← avgpool(GeLU(conv1d(Xsrc)))
Xsrc ← softmax(linear(Xsrc))

Algorithm 2 TF-Conv testing (single batch)

Ensure: Xsrc = tensor of(seq len, batch size, num features)
Ensure: Xtgt = tensor of zeros(seq len, 1, num features− 1)

Xsrc, Xtgt ← time2vec(Xsrc), time2vec(Xtgt)
Xsrc ← tf encode(Xsrc)
outputs = [ ]
while cur seq 6= seq len do

output← tf decode(Xsrc[cur seq], Xtgt,masks)
Xtgt ← output
outputs.append(output)

end while
outputs← avg pool(GeLU(conv 1d(outputs)))
outputs← softmax(linear(outputs))

set to 10 and the convolution window size was set
to 2 for all experiments. The rest of the hyperpa-
rameters are given in Table 2 based on prediction
day. The hyperparameter optimization was done
using grid search.

6 Discussion

In terms of mean F1 score, the proposed model TF-
Conv is the most suitable model for the majority of
the cases. RF had problems such as overfitting as it
performs nearly perfectly in the training site, TH1,
whereas it performs poorly in other locations, SVM
suffers from the same phenomenon for the Dows-
ing buoy. To obtain satisfactory results for RF, it
could be trained on all four locations which might
cause memory issues and maintenance costs. IF
assumes that there are anomalies in the data which
can be predicted due to their different properties
and low occurrence rates. The results show that the
increased activity in all of the sites were not anoma-
lies due to their properties and the assumptions
made by IF does not hold.
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Figure 3: F1 scores for anomaly prediction for all 4
buoys
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Day Batch Size # of Encoder/Decoder Layers # of Attention Heads Transformer Network Dimensions Learning Rate Dropout Rate

1 16 2 2 32 0.001196 0.212
2 64 3 5 256 0.000606 0.512
3 6 1 2 32 0.002497 0.102
4 6 1 2 128 0.003346 0.136
5 4 3 2 128 0.003670 0.217
6 6 2 1 128 0.003635 0.115
7 6 2 1 32 0.003635 0.115

Table 2: Hyperparameters used for each model where the value of day is i days into the future.

1 2 3 4 5 6 7
Days

0.0
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0.4

0.6

0.8
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F1
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co
re

Mean F1 Scores

SVM
RF
IF
Luong
Conv-VAE
TF-Conv

Figure 4: Mean F1 scores for anomaly prediction
for testing buoys: WestGab, LivBay and Dowsing

The decreasing performance of the attention
model between day 1 and 6 indicates that Luong
attention is not suitable for predicting near future
blooms but it may be suitable for prediction for
days further in future. The inputs for the deep
learning models are aggregated based on observa-
tion day, whereas the machine learning models use
averages of features based on observation day due
to the model’s limitation of not being able to model
tensors more than 2 dimensions. The use of aggrega-
tion aids the deep learning models’ generalisability
since these models are exposed to raw data rather
than a summarized version. Even with a summa-
rized version of data, RF performs better in singular
site comparison but the trade-off is made in gener-
alisability.

The explanations differ from site to site as ob-
served in Figure 5. It also shows that the order
and the magnitude of the importances change from
day to day. The model used assumes feature inde-
pendence and the explanation model is linear. The
explanation models show that each site has its own
properties and the site with the most positive labels
(LivBay) and the best performance out of all sites

has o2conc as the most important future which in-
dicates that tracking the o2conc in the water might
be useful where anomalies frequently occur while
using the TF-Conv model. The explanations also
give insight into how input features differ from one
another depending on prediction day, empirically
showing the requirement for training a model for
each prediction day.

7 Conclusion and Future Work

In this paper, we proposed a novel model for de-
tecting algal blooms by predicting dissolved oxygen
concentration 1 to 7 days ahead using time embed-
dings, a transformer network, a convolutional layer
and a linear layer. The proposed model increases
the prediction performance by 5% in terms of F1
score on average ranging from 1 to 7 days ahead
of occurrence. The importance of each feature is
provided with SHAP values per day, increasing the
interpretability of the model. We have observed
that the most important feature changes based on
monitoring site and prediction day.

Data with different frequencies, such as ship-
based data or data with different modalities could
be used to improve the detection process. This work
could be extended to closed bodies of water. The
current results indicate that models could be tested
for different day ranges than they were trained on to
test the model’s generalisability. The stability of the
model could be checked by predicting bloom events
further than seven days. The model’s performance
could be assessed by training it per location. Trans-
fer learning methods could be used in the future to
test the efficiency of this architecture.
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Figure 5: Left: Feature importances of SHAP for predictions 1-day ahead. Right: Feature importances of
SHAP for predictions 7-days ahead.
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