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Spatially-Aware Dialogue Control Using Hierarchical
Reinforcement Learning

HERIBERTO CUAYÁHUITL and NINA DETHLEFS, University of Bremen

This article addresses the problem of scalable optimization for spatially-aware dialogue systems. These
kinds of systems must perceive, reason, and act about the spatial environment where they are embedded. We
formulate the problem in terms of Semi-Markov Decision Processes and propose a hierarchical reinforcement
learning approach to optimize subbehaviors rather than full behaviors. Because of the vast number of policies
that are required to control the interaction in a dynamic environment (e.g., a dialogue system assisting a
user to navigate in a building from one location to another), our learning approach is based on two stages:
(a) the first stage learns low-level behavior, in advance; and (b) the second stage learns high-level behavior,
in real time. For such a purpose we extend an existing algorithm in the literature of reinforcement learning
in order to support reusable policies and therefore to perform fast learning. We argue that our learning
approach makes the problem feasible, and we report on a novel reinforcement learning dialogue system that
performs a joint optimization between dialogue and spatial behaviors. Our experiments, using simulated and
real environments, are based on a text-based dialogue system for indoor navigation. Experimental results in
a realistic environment reported an overall user satisfaction result of 89%, which suggests that our proposed
approach is attractive for its application in real interactions as it combines fast learning with adaptive and
reasonable behavior.
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1. INTRODUCTION

Reinforcement learning may be used to infer optimal behaviors for conversational
interfaces. A reinforcement learning agent learns its behavior from interaction with
an environment, where situations are mapped to actions by maximizing a long-term
reward signal. The standard reinforcement learning paradigm works under the for-
malism of Markov Decision Processes (MDPs) [Kaelbling et al. 1996; Sutton and Barto
1998; Russell and Norvig 2003]. An MDP is characterized by a finite set of states S
(corresponding to situations in the dialogue), a finite set of actions A (corresponding to
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dialogue actions), an unknown state transition function, and a reward or performance
function that rewards the agent for each selected action. Solving the MDP means find-
ing a mapping from the current state st to an action at corresponding to a dialogue policy
π∗(st) = arg maxat∈A Q∗(st, at), where the Q-function specifies the cumulative rewards
for each state-action pair.

In the past, dialogue systems that learn to optimize their behavior have typically
been investigated using flat tabular reinforcement learning [Levin et al. 2000; Walker
2000; Young 2000; Singh et al. 2002; Scheffler 2002; Pietquin 2004]. The scalability
of this approach is limited because state spaces grow exponentially according to the
number of state variables taken into account. This problem, referred to as the curse of
dimensionality, has been addressed in different ways: (a) by function approximation
techniques [Denecke et al. 2004; Henderson et al. 2008], which find solutions on re-
duced search spaces; (b) by evolutionary methods for learning dialogue strategies that
mitigate the size of search spaces [Toney 2007]; and (c) by using master, summary, and
factorized spaces [Williams 2006; Thomson 2009; Young et al. 2010]. These investiga-
tions have been applied to dialogue systems resulting in a single global solution, and
less attention has been paid to finding solutions using divide-and-conquer approaches
[Cuayáhuitl et al. 2010c; Lemon 2010]. The latter have a number of benefits: their aim
is not only to scale a single optimization module such as dialogue management, but
they also aim at jointly optimizing different modules such as dialogue management
and language generation.

This paper focuses its attention on reinforcement learning for spatially-aware dia-
logue systems, which must perceive, reason, and act in relation to the environment in
which they are embedded. In such systems the dialogue behavior is strongly influenced
by the particular domain in which they behave. We focus on the wayfinding domain, and
argue that dialogue management and route generation behavior need to be optimized
in a unified way in order to address adaptive behavior within a spatial environment.
In this way, the dialogue manager can draw on spatial knowledge to choose optimal
dialogue actions, and the route generator can derive optimal route instructions, given
a dynamic spatial environment. Furthermore, it will be necessary for learning to occur
in real time (while) using a simulator (also referred to as real-time AI [Russell and
Norvig 2003]).

Consider the following two scenarios: (a) dialogue behavior weakly coupled with spa-
tial behavior, where dialogue actions are independent of spatial ones; and (b) dialogue
behavior tightly-coupled with spatial behavior, where dialogue actions depend on spa-
tial ones. While offline learning may be sufficient for the former scenario, only online
learning (applied when the environment changes, for instance after a user’s query) is
suitable for the latter scenario. Moreover, the environment is continuously changing
(because of either new user prior knowledge, new world objects, or constraints in the
navigation space), and the system has to behave accordingly. This tells us that offline
learning cannot be applied to spatially-aware conversational interfaces. Since the spa-
tial environment is constantly changing, situated dialogues with adaptive behavior
demand efficient learning techniques. We are not aware of any related work using such
a kind of learning for dialogue systems.

It has to be remembered that even though the dialogue system we present optimizes
behavior specifically for the wayfinding domain, our proposed approach is more general
and can be transferred to different domains. The work that relates most closely to ours
is Lemon [2010], which presents an approach for unified optimization of dialogue man-
agement and language generation for content selection and information presentation
strategies in the domain of restaurant and music recommendations. His results showed
that a system that learned behavior in a unified fashion can outperform a system that
learned both policies in isolation.
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In the rest of the article we show that reinforcement learning with a hierarchical set-
ting and policy reuse is particularly relevant to the situated domain. This is because it
merges dialogue behavior with spatial behavior into a unified, efficient, and scalable op-
timized behavior. The article is organized as follows. Section 2 introduces findings from
spatial cognition research that are important in informing the behavior of a situated
wayfinding assistant. Section 3 introduces reinforcement learning for spatially-aware
dialogue systems with a hierarchical setting. Sections 4 and 5 present the results we
obtained with our proposed approach. The former section describes results obtained
with a simulated environment; the latter section reports an evaluation in a real setting
with human participants. We then provide a discussion of our work contrasted with
the current literature in Section 6. Finally, Section 7 draws conclusions and comments
on avenues for future research.

2. TOWARDS SPATIALLY-AWARE DIALOGUE SYSTEMS

The behavior of situated spoken dialogue systems is strongly influenced by the par-
ticular domain in which they operate, in our particular case the wayfinding domain.
The challenge that arises with the wayfinding domain in particular is that information
can be presented to a user in many different ways. First, there can be multiple routes
from an origin to a destination, for instance, the easiest route to follow, the shortest
route, the route simplest to describe, etc., and it is not trivial to decide which route is
the best, given the current user and the properties of the current spatial environment
(including the complexity of junctions, salience of landmarks, or length of the route).
Second, routes can be provided at different degrees of granularity, the best level will
depend on the users’ knowledge of the environment and the complexity of the route.
Finally, there are different ways of realizing the surface form of routes, including the
realization as a full text, or (on the opposite end of abstraction) a list of schematic
instructions, or several variants between these two extremes. In other words, in order
to supply optimal route instructions for individual users, the system not only needs
information about the user’s prior knowledge of the navigation environment—the ex-
perience of navigating the environment that users bring with them, but also knowledge
about the spatial environment in which the system navigates. In addition, empirical
findings on the principles that typically guide human wayfinding behavior can help
make route instructions more easily comprehensible.

2.1. Human Wayfinding Behavior

Based on studies on human route descriptions, Lovelace et al. [1999] suggested the
following as characteristics of good route descriptions, which can be used by wayfinding
dialogue systems: (a) provide look-ahead information to prepare the user for upcoming
choice points, (b) include salient landmarks to provide additional points of orientation,
(c) provide confirmatory information to assure users they are still on the right track,
(d) present information in a sequential way corresponding to the sequence of actions to
be taken, (e) avoid redundancy, and (f) avoid metrical distances because humans find
it difficult to estimate these exactly.

In addition to these features, principles of spatial chunking and adaptation to spatial
environments and user groups have been assumed to enhance the cognitive adequacy
of route instructions. Landmarks definitely appear to play a key role. They are highly
prominent features in route descriptions [Denis 1997], because they help humans struc-
ture their knowledge of an environment [Sorrows and Hirtle 1999]. As a further crucial
feature, spatial chunking provides a means of transforming small route segments (that
may directly correspond to the output of some routing algorithm) into high-level in-
structions that humans may find easier to process and remember [Klippel et al. 2009].
Humans also tend to adapt their instructions to changing spatial situations, such as
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the type or complexity of intersections, the presence or absence of salient landmarks,
or the actions that need to be performed at various points [Klippel et al. 2010]. Finally,
there is adaptation to the information needs of different user groups in human route
descriptions, which take into account users’ means of transportation [Tenbrink and
Winter 2009] or prior knowledge [May et al. 2003; Burnett et al. 2001].

2.2. Spatial Knowledge in a Wayfinding Dialogue System

The following elements can be taken into account by wayfinding dialogue systems.

—Spatial data. Knowledge of a given spatial environment can be specified as a map,
for instance, by using geometric and semantic information represented as ontolo-
gies. The former type of information specifies generic elements such as points, lines,
polylines and polygons. The latter specifies real world objects (e.g., rooms, corridors,
walls, doors) and a route graph that models the navigational space. The route graph
consists of a set of points and segments connecting such points [Werner et al. 2000].
In addition, the world objects have a set of features such as names, colors, owners,
etc. The prominent objects are referred to as landmarks.

—Ranking of landmarks. We follow Raubal and Winter [2002] in ranking landmarks
based on the categories suggested by Sorrows and Hirtle [1999]. For this purpose,
we identified the relevant types of landmarks in our domain, such as offices, toilets,
or classrooms, and assigned them a weight between 0 and 1 indicating their relative
salience in the environment. In this way, we can anticipate both the appropriateness
of a landmark for inclusion in an instruction as well as the likelihood with which a
user will be familiar with the location.

—Confusion probabilities of junctions. In a similar fashion, junctions can be assigned a
weight depending on their complexity, taking into account the number of paths leav-
ing a junction, or the salience weights of present landmarks. The assigned weights
correspond to the likelihood with which users may get lost at this point. This infor-
mation can be used, on the one hand, for route planning in that the easiest route will
be the one with least likelihood of getting lost. On the other hand, it can be used for
route descriptions. Whenever a junction with high confusion probability needs to be
visited by the user, the system can decide to include additional detail and thereby
correspond to the user’s need for information.

—Interactively guided wayfinding. The sample dialogues presented in Table I show
evidence that a situated dialogue manager must perform reasoning about the spatial
environment. In particular, a spatially-aware dialogue manager must deal with the
following questions:
—When to present information?
—When to ask for users’ prior knowledge?
—What information to present according to the dialogue history and spatial envi-

ronment?
We explain these questions with the dialogues shown in Table I. Consider the
following two scenarios: (a) the dialogue manager provides all necessary instruc-
tions without taking into account the user’s prior knowledge, see first dialogue; and
(b) the dialogue manager decides first to ask if the user knows the intermediate
location (or landmark) “stuga room” and then provide information, see second di-
alogue. These decisions depend on several factors, such as the length of the paths
to the goal and the prior knowledge of known landmarks along these paths. In this
way, they are very peculiar to the spatial setting and cannot be optimally addressed
without a tight coupling of spatial information and dialogue management. The third
question is addressed by system behavior that takes the spatial environment into
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Table I.
Sample dialogues in the wayfinding domain showing in-advance indoor route instructions, where the latter
system provides shorter route instructions due to a known intermediate landmark. Landmarks refer to
reference relations such as {r1 = after, r2 = before, r3 = right, r4 = left, r5 = front}

Agent Dialogue Act Utterance
Sys1 greeting() Welcome to the wayfinding info-kiosk.

request(slot=destination) How can I help you?
Usr How do I get to room A3445?
Sys1 generateRouteInstructions(origin=default,

destination=a3445)
informQueryStatus() The following are your route

instructions.
verbalizeInstructions(<turn around, Turn around, then go straight on,

straight,next corridor,glass door:r1> passing the glass door, until the
corridor. Turn left, and go straight

<left,straight,stuga room,message board:r3> on, passing the message board on
your right, until the stuga room.

<right,straight,next corridor,glass door:r1> Turn to the right, then go straight,
passing the glass door, until
the end of the corridor.

<right,straight,door A3445:r3>) Turn to the right, then go straight
until the door A3445 on your right.

askRepeatInstructions() Do you want to hear that again?
Usr No thanks
Sys1 askAnotherQuestion() Do you have another question?
Usr No, I don’t
Sys1 closing() Thanks for using the wayfinding

info-kiosk. Good bye!
Sys2 greeting() Welcome to the wayfinding info-kiosk.

request(slot=destination) How can I help you?
Usr How do I get to Dr. Watson’s office?
Sys2 clarify(entries={james watson,peter watson}) Do you mean James or Peter Watson?
Usr Peter Watson
Sys2 rankIntermediateLocations(

origin=default,destination=peter watson)
askIntermediateLocation(

landmark=stuga room) Do you know how to get to
the stuga room?

Usr Yes I do
Sys2 generateRouteInstructions(origin=stuga room,

destination=peter watson)
informQueryStatus() OK, the following are your route

instructions.
verbalizeInstructions( Go to the stuga room first, then

<stuga room,go,main entrance:r5> facing the main entrance, turn left
<left,straight,next corridor:r3> and go straight until the next

corridor on your right.
<right,straight,door A3445:r3>) Turn right and go straight until door

A3445 that will be on your right.
askRepeatInstructions() Do you want to hear that again?

Usr No thanks
Sys2 askAnotherQuestion() Do you have another question?
Usr No, good bye
Sys2 closing() Thanks for using the wayfinding

info-kiosk. Good bye!
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account, such as choosing a route that is easiest for the user to follow or that goes
past landmarks with which the user is familiar.

In this article we argue that the behavior of situated dialogue managers is not
easy to hand-code and therefore needs to adopt optimization methods. Furthermore,
reinforcement learning for our domain is challenging because it has to occur in real
time, during the course of the interaction. The rest of the article illustrates our approach
to this problem.

3. REINFORCEMENT LEARNING FOR SITUATED INTERACTION

Typically, learned dialogue behavior is induced in advance, before interacting with real
users. This approach is problematic for a number of reasons. First, dialogue should take
into account users’ prior knowledge, for instance, Do you know how to get to the post
room? Second, content selection should be optimized according to a changing spatial
environment, for instance, What route to follow? What landmarks to include? Third,
spatially-aware behavior needs to be estimated online because of the vast number of
policies. This is justified by the fact that

∑n
r>1 n!/(n−r)! unique routes are possible for n

queryable locations of length r, assuming that wayfinding can occur from any location
to any other in the space. Even when route graphs are usually not fully connected, this
vast amount of possible routes prohibits the approach of policy learning in advance,
and makes the approach of policy learning in real time preferable. The rest of this
section shows how to tackle this problem.

3.1. Background on Reinforcement Learning Dialogue Agents

A reinforcement learning agent senses and acts in its environment in order to learn to
select optimal actions to achieve its goal. The agent’s task is to learn a policy or control
strategy for choosing the best actions in the long run that will achieve its goal. For such
a purpose the agent maintains a cumulative reward for each state or state-action pair.
The environment is usually represented as a Markov Decision Process (MDP) or as a
Partially Observable MDP (POMDP). In this paper we focus our attention on the former
model. A reinforcement learning agent interacting with an environment described as
a Markov Decision Process is defined as a 4-tuple 〈S, A, T , R〉 characterized as follows.

—S is a finite set of states in the environment, where S = {s0, s1, . . . , sN} and st is the
state at time t. The states in an MDP are directly observable, used to describe all pos-
sible situations in the spatial environment, and the basis for action selection. Assum-
ing that we cast dialogue optimization as an episodic task, then the state set includes
nonterminal states and terminal states. The state at time t + 1 is also denoted as s′.

—A is a finite set of actions available in the spatial environment, where A =
{a0, a1, . . . , aM} and at is the action at time t. When action at is executed, it changes the
current state of the world from st to st+1. The action at time t+1 is also denoted as a′.

—T is a state transition function that observes the next state s′ given the current
state s and action a. This state transition function is represented with a conditional
probability distribution P(s′|s, a) satisfying

∑
s′∈S P(s′|s, a) = 1,∀(s, a).

—R is the reward function that specifies the immediate reward rt at time t given to
the agent for choosing action a when the environment makes a transition from s to
s′. The reward at time t + 1 is also denoted as r′.

To control a system described as a Markov Decision Process, one needs a decision-
making function or policy π , which is a mapping from environment states s ∈ S to
actions a ∈ A. A stochastic policy is denoted as π (s) = P(a|s) and a deterministic policy
is denoted as π (s) = a. The optimal solution for an MDP is that of taking the best action
at available in state st, that is, the action that collected as much reward as possible over
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time. A given sequence of states, actions, and rewards {s0, a0, r1, s1, a1, r2, s2, a2 . . .},
receives a total cumulative discounted reward expressed as r = r1 + γ r2 + γ 2r3 +
. . . γ τ−1rτ = ∑τ−1

k=0 γ krk+1, where the discount rate 0 ≤ γ ≤ 1 makes future rewards
less valuable than immediate rewards as it approaches 0. An optimal policy performs
action selection according to

π∗(s) = arg max
a∈A

Q∗(s, a), (1)

where the Q-function specifies the cumulative reward of starting in state s, taking
action a and then following policy π∗ thereafter. The optimal policy can be learned
by reinforcement learning methods such as Q-Learning or SARSA. For example,
Q-Learning computes Q-values according to

Q(s, a) ← Q(s, a) + α
[
r + γ max

a′∈A
Q(s′, a′) − Q(s, a)

]
. (2)

Q-Learning updates values for sample state-action pairs (s, a), where the execution
of action a in state s yields state s′ and reward r. γ is a discount rate in the range [0, 1],
and α is a learning rate parameter that decays from 1 to 0. An important character-
istic of reinforcement learning is the trade-off between exploration and exploitation.
The agent has to perform exploration in order to discover better behaviors, but it also
has to perform exploitation of the already learned behavior in order to obtain more
reward. In this dilemma, a learning agent must try different actions and progressively
prefer those that seem to be the best. A reinforcement learning agent can perform ex-
ploitation (1) with a fixed probability, a method referred to as ε-greedy action selection;
(2) according to a probability distribution of cumulative rewards Q(s, a), also referred
to as softmax action selection; or (3) the learning method (such as policy-gradient or
Bayesian methods) can optimize this trade-off to reduce large changes in the value
function.

Although MDP-based reinforcement learning offers an attractive framework for op-
timizing the behavior of conversational systems, its practical application is affected by
the following problems: the curse of dimensionality, partial observability, and learning
from real interactions. In the first, the state space growth is exponential in the number
of state variables. In the second, the dialogue agent operates under uncertainty (e.g.,
automatic speech recognition errors). In the third, reinforcement learning methods re-
quire a large number of dialogues to find optimal policies. These problems offer motives
for proposing alternative optimization approaches. In the rest of this section we tackle
the first and last problem using a hierarchical approach and show how to apply it to
spatially-aware dialogue systems.

3.2. Spatially-Aware Dialogue Control Using Hierarchical SMDPs

We treat spatially-aware dialogue control as a discrete Semi-Markov Decision Process
(SMDP) in order to address the problem of scalable dialogue optimization. A discrete-
time SMDP M = 〈S, A, T , R〉, as formulated by Dietterich [2000a], is characterized by
a set of states S; a set of actions A; a transition function T that specifies the next state
s′ given the current state s and action a with probability P(s′, τ |a, s); and a reward
function R(s′, τ |s, a) that specifies the reward given to the agent for choosing action a
when the environment makes a transition from state s to state s′. The random variable
τ denotes the number of time-steps taken to execute action a in state s. The SMDP
model allows temporal abstraction, where actions take a variable amount of time to
complete their execution. In this model two types of actions can be distinguished:
(a) single-step actions roughly corresponding to dialogue acts or spatial actions such as
“turn left” or “turn around”, and (b) multistep actions corresponding to subdialogues or
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Fig. 1. Top-down hierarchy of reinforcement learning agents for wayfinding dialogue systems, representing
high-level behaviors and encapsulating lower-level ones. When a child agent terminates its execution, control
is transfered to its parent and so on until the end of the dialogue.

spatial actions such as “go straight until the end of the corridor” (consisting of N single-
step actions such as “straight, straight, straight, half left, straight, straight, straight”).
The solution to a Semi-Markov Decision Process is an optimal policy π∗, which is a
mapping from environment states s ∈ S to primitive or composite actions a ∈ A.

This research treats each composite, spatially-aware dialogue action as a separate
SMDP as suggested in [Cuayáhuitl et al. 2007; Cuayáhuitl 2009; Cuayáhuitl et al.
2010c]. In this way a Markov Decision Process (MDP) can be decomposed into multiple
Semi-MDPs that are hierarchically organized into L levels and N models per level,
denoted as M = {Mi

j}, where j ∈ {0, . . . , N − 1} and i ∈ {0, . . . , L − 1}. Thus, a given
SMDP in the hierarchy is denoted as Mi

j = 〈Si
j, Ai

j, T i
j , Ri

j〉. The goal of an SMDP is to
find an optimal policy π∗, that maximizes the reward of each visited state. The optimal
action-value function Q∗(s, a) specifies the expected cumulative reward for executing
action a in s and then following π∗. The Bellman equation for Q∗ of model (also referred
to as subtask) Mi

j can be expressed as

Q∗i
j (s, a) =

∑
s′,τ

Pi
j (s

′, τ |s, a)
[
Ri

j(s
′, τ |s, a) + γ τ max

a′
Q∗i

j (s′, a′)
]
. (3)

Finally, the optimal policy for each model in the hierarchy is defined by

π∗i
j (s) = arg max

a∈Ai
j

Q∗i
j (s, a). (4)

These policies can be found using the reinforcement learning algorithms described
in the next subsection (also applicable to dialogue systems in other domains). Before
that, we briefly address the following question: How should a spatially-aware MDP
be decomposed into subproblems? Because the process of automatically breaking an
MDP into subproblems is challenging, heuristic approaches can be used to manually
decompose such tasks. The general idea is to decompose a dialogue into subdialogues,
and to decompose a spatial task into smaller tasks. Our hierarchy for a wayfinding dia-
logue system is shown in Figure 1. We used a handcrafted hierarchical dialogue struc-
ture and a hierarchical spatial structure induced from the spatial data (corresponding

ACM Transactions on Speech and Language Processing, Vol. 7, No. 3, Article 5, Publication date: May 2011.



Spatially-Aware Dialogue Control Using Hierarchical Reinforcement Learning 5:9

to models M2
j and M3

j in the hierarchy above). This hierarchy shows dialogue subtasks
such as “collect information” and spatially-aware subtasks such as “provide informa-
tion”.

3.3. Hierarchical Reinforcement Learning Algorithms

The HSMQ-Learning algorithm (Algorithm 1) simultaneously learns a hierarchy
of SMDP-based action-value functions Q∗i

j (s, a) [Dietterich 2000b]. This algorithm
has been used to optimize the behavior of information-seeking dialogue systems
[Cuayáhuitl 2009; Cuayáhuitl et al. 2010c]. Briefly, this learning algorithm receives
dialogue subtask Mi

j , and knowledge base1 k used to initialize state s. It performs
similarly to Q-Learning for primitive actions, but for composite actions it invokes re-
cursively with a child subtask. The execution of subtasks uses a stack and operates
as follows: the dialogue starts with the root subtask M0

0 on the stack; when a child
subtask M1

j is selected, it is pushed onto the stack and control is transferred to the
child subtask which is executed until reaching a terminal state—this may involve a
recursive execution of other subtasks that may reach the bottom of the hierarchy;
then the current subtask is popped off the stack and control is transferred back to the
parent subtask at the next state s′ ∈ Si

j ; this process continues until the execution of
the root subtask is completed, which empties the stack and terminates the dialogue.
When a given subtask is completed with τ time steps, it returns a cumulative reward
rt+1 +γ rt+2 +γ 2rt+3 +· · ·+γ τ−1rt+τ , and continues its execution until finding a terminal
state for the root subtask M0

0 . This algorithm is iterated until convergence occurs to
optimal context-independent policies.2

The HSMQ-Learning algorithm just described (though applicable to information-
seeking systems) has limited applicability to situated dialogue systems mainly due to
slow learning. Because spatially-aware dialogue control requires learning in real-time,
here we show an extension of the HSMQ-Learning algorithm for more efficient learn-
ing. The HSMQ-Learning algorithm with policy reuse shown in the following uses a
two-stage approach. The first stage, applied before user-machine interaction, induces
policies from a stationary simulation environment with static goal states (e.g. purely
dialogic policies such as collect information, or policies at the bottom of the hierarchy
that do not include the user’s goal location). The second stage, applied in real time after
a human request, induces policies from a nonstationary simulation environment with
dynamic goal states (e.g., agents referring to a goal location and parent policies). The dif-
ference between static and dynamic goal states is that the latter refer to unknown loca-
tions; for instance, while one user navigates to location X, another user navigates to lo-
cation Y, and so on. While the first stage applies the HSMQ-Learning algorithm to each
subtask, the second stage applies the HSMQ-Learning algorithm with policy reuse in
order to learn a unified hierarchical policy. This approach avoids learning from scratch
by reusing learned behavior from the first stage in order to focus on learning high-level
behavior, and therefore to infer policies with fast learning. For example, going back to
the hierarchy of agents for the dialogue system shown in Figure 1, while most of the
leaf agents are part of the first stage, nonleaf agents are part of the second stage. In this

1The knowledge base keeps track of all the information generated through the dialogue history by holding
attribute-value pairs represented in an ontology-based structure.
2An optimal context-independent policy achieves the highest cumulative reward for the given composite
action, but suffers from being locally optimal rather than globally optimal. Here, temporally extended be-
haviors execute actions that are locally optimal. The advantage is that context-independent policies facilitate
state abstraction and policy reuse, but context-dependent policies allow stronger optimality. The latter are
weaker for state abstraction and policy reuse.
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ALGORITHM 1: HSMQ-Learning for dialogue control

1: function HSMQ(KnowledgeBase k, subtask Mi
j) return totalReward

2: s ← knowledge-compact state in Si
j initialized from k

3: totalReward ← 0, discount ← 1

4: while s is not a terminal state do
5: Choose action a from s using policy derived from Qi

j (e.g. ε-greedy)
6: Execute action a and update knowledge-rich state k
7: if a is primitive then
8: Observe one-step reward r
9: else if a is composite then
10: r ← HSMQ(k, model of composite action a)
11: end if
12: totalReward ← totalReward + discount × r
13: discount ← discount × γ
14: Observe resulting state s′

15: Qi
j(s, a) ← (1 − α)Qi

j(s, a) + α
[
r + discount × maxa∈Ai

j
Qi

j(s
′, a′)

]
16: s ← s′

17: end while
18: end function

example, the SMDP models that require learning in real time are {M1
1 , M2

0 , M2
1 , M3

j },
where the latter represents a subset of models depending on the number of routes that
lead to the goal location. These models determine the route to follow and whether or not
to ask for intermediate locations. Note that when a child agent (re-) learns its behavior,
its parent also relearns its behavior in order to maintain optimal behavior. Algorithm
2 is also iterated until convergence occurs to optimal context-independent policies
[Dietterich 2000a; Dietterich 2000b]. Although both previous algorithms can be ap-
plied to dialogue systems in different domains, a key advantage of the latter algorithm
is its application to scenarios that require learning in real time.

4. EXPERIMENTS USING A SIMULATED ENVIRONMENT

The aim of our experiments was threefold: (1) to show that hierarchical reinforcement
learning is suitable for joint optimization of dialogue and spatial behaviors, (2) to
investigate the potential application of our proposed learning approach by comparing
HSMQ-Learning with and without policy reuse, and (3) to induce adaptive behavior
for familiar and unfamiliar users.

We hypothesize that in this way: (a) the joint optimization of dialogue and spatial
behavior leads to better performance than optimizing the two in isolation; (b) HSMQ-
Learning with policy reuse leads to quicker learning than without policy reuse and
thereby makes our approach suitable for spatially-aware dialogue control; and that
(c) the system will learn to adapt its behavior to users’ prior knowledge by asking
familiar users for intermediate landmarks—if any suitable candidates are present in
the environment—and providing full instructions to unfamiliar users.

Our experiments are based on a dialogue system for indoor navigation. Our rein-
forcement learning agents learned their behavior from a simulated environment with
spatial data derived from a real building that is complex to navigate.3 We used data
from a single floor (see Figure 4), and represented it as an undirected acyclic graph with

3Our dialogue system can be seen as two versions, one for each type of user. The system does not induce
the user type online, instead, it is run for one user type because interactions are short and do not provide
enough information for inducing the user type online. We left the induction of the user type as future work,

ACM Transactions on Speech and Language Processing, Vol. 7, No. 3, Article 5, Publication date: May 2011.



Spatially-Aware Dialogue Control Using Hierarchical Reinforcement Learning 5:11

ALGORITHM 2: HSMQ-Learning with policy reuse for dialogue control

1: function HSMQ PR(KnowledgeBase k, subtask Mi
j , boolean reusable) return totalReward

2: s ← knowledge-compact state in Si
j initialized from k

3: totalReward ← 0, discount ← 1

4: while s is not a terminal state do
5: if Mi

j is reusable then
6: Choose action a from π∗i

j (s) = arg maxa∈Ai
j

Q∗i
j (s, a)

7: else
8: Choose action a from s using policy derived from Qi

j (e.g. ε-greedy)
9: end if
10: Execute action a and update knowledge-rich state k
11: if a is primitive then
12: Observe one-step reward r
13: else if a is composite then
14: reusable ← false if action a has dynamic goal states, or if the children of
15: action a have (re-) learnt their behavior; true otherwise
16: Mi

j ← model of composite action a, with dynamic goal states updated
17: r ← HSMQ PR(k, Mi

j , reusable)
18: end if
19: totalReward ← totalReward + discount × r
20: discount ← discount × γ
21: Observe resulting state s′

22: if Mi
j is not reusable then

23: Qi
j(s, a) ← (1 − α)Qi

j(s, a) + α
[
r + discount × maxa′∈Ai

j
Qi

j(s
′, a′)

]
24: end if
25: s ← s′

26: end while
27: end function

400 equally distributed nodes. This route graph and the stochastic behavior shown in
Subsection 4.2 form the agent’s learning environment.

4.1. Characterization of the Learning Agent

The learning agent used the state-action space shown in Tables II and III, which re-
sults in a space of |S× A| = 1.18×108 state-actions. Because tabular flat reinforcement
learning is not feasible for this application, we divided the state-action space into the
hierarchy shown in Figure 1. Here for illustration purposes, we focus on the right
branch because it involves a mixture of dialogue and spatial behavior. The characteri-
zation of our hierarchical learning agent used 85 models (see Figure 2): one parent, two
children, and 82 grandchildren. The latter were induced automatically from turning
points in the spatial data, for which we used a random walk approach. Briefly, the
model at the top unifies dialogue and spatial behavior, the models in the middle of the
hierarchy provide high-level navigation behavior (they navigate from one junction to
another), and the models in the bottom of the hierarchy provide low-level navigation
behavior (they behave with primitive actions). In contrast to the flat state-action space
representation, our hierarchical representation used only 200K state-actions. The state
transitions involved a stochastic environment described in the next section.

where longer interactions such as in-situ route instructions provide more information so that the system can
induce the user type during the course of the interaction.
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Table II.
State variables for the wayfinding dialogue system. Considering a graph with 400 nodes, the state space
corresponds to |S| = 3 × 4 × 4 × 3 × 2 × 400 × 4 × 2 × 2 × 2 = 3.7 × 106 states

Variable Values Description
Instructions {0, 1, 2} Corresponding to ‘unknown’, ‘known’, ‘provided’
KnownIntermediateLandmark {0, 1, 2, 3} Corresponding to ‘null’, ‘empty’, ‘yes’, ‘no’
RepeatInstruction {0, 1, 2, 3} Corresponding to ‘null’, ‘empty’, ‘yes’, ‘no’
SalientLandmarkToAsk {0, 1, 2} Corresponding to ‘unknown’, ‘none’, ‘known’
StatusProvideInformation {0, 1} Corresponding to ‘unknown’, ‘informed’
Location (x, y) Discrete coordinates of graph nodes from the space
Orientation {0, 1, 2, 3} Corresponding to ‘south’, ‘north’, ‘east’, ‘west’
SalientLandmark {0, 1} Corresponding to ‘absent’, ‘present’
SegmentLength {0, 1} Corresponding to ‘short’ and ‘long’
UserType {0, 1} Corresponding to ‘unfamiliar’ and ‘familiar’

Table III. Set of Primitive Actions (|A| = 32) for the Wayfinding Dialogue System

Action Description
askIntermediateLocation{0...24} Ask for an intermediate location out of 25 best known
informQueryStatus Inform status of found or not found location
verbalizeInstructions Provide route instructions
askRepeatInstructions Ask for repetition
goStraight Go straight
turnLeft Turn left
turnRight Turn right
turnAround Turn around

The reward function—used by all models in the hierarchy—addresses efficient in-
teractions by penalizing more strongly turning instructions than going straight. It is
defined by the following rewards given to the learning agent for choosing action a when
the environment makes a transition from state s to next state s′:

r(s, a, s′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for reaching the goal state
–5 for a turning action

–10 for an already executed subtask or asked location
–100 for asking for an intermediate location farther than the goal

–1 otherwise.

(5)

The learning setup used the learning algorithms described in the previous section
(HSMQ-Learning with and without policy reuse). The learning parameters were the
same for both learning algorithms. The learning rate parameter α decays from 1 to 0
according to α = 100/(100 + τ ), where τ represents elapsed time-steps in the current
subtask. Each subtask Mi

j had its own learning rate with undiscounted rewards. The
action selection strategy used ε-Greedy with ε = 0.01, and initial Q-values of 0.01.
We used optimistic initial Q-values in order to encourage exploration at the beginning,
with the aim of accelerating the stabilization of learning curves.

4.2. The Simulated Environment

We used a simulated user to navigate in the stochastic environment taking into account
two sources of uncertainty. First, the user has confusions when navigating to the goal
stemming from complex junctions or the absence of salient landmarks for anchoring
the choice points in the environment. Confusions are expressed by the conditional
probability

P(Conf usion|Location, Orientation, SalientLandmark, SegmentLength, UserType), (6)

ACM Transactions on Speech and Language Processing, Vol. 7, No. 3, Article 5, Publication date: May 2011.



Spatially-Aware Dialogue Control Using Hierarchical Reinforcement Learning 5:13

Fig. 2. Hierarchy of SMDP models (as feature structures) for the wayfinding dialogue system. The
squared numbers show relationships in the hierarchy. The model M1

1 unifies dialogue and spatial behavior,
the models M2

j provide high-level navigation behavior by navigating to the goal by moving from one junction

to another, and the models M3
j provide low-level navigation behavior by navigating with primitive actions.

The models M3
j are illustrated in a compact way, they actually represent 82 models. After a user’s query, the

models with state variable “Location” involve dynamic goal states 1 = {(x, y), ?, ?, ?, ?)}, and they depend
on the goal location (x, y).
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where the variable “Confusion” has the value set {yes,no}. Because inducing such
probabilities in a reliable way is beyond the scope of this work,4 we used random
probabilities in the range of 0 ≤ 0.1 for junctions with three or more segments and 0 ≤
0.05 otherwise. Second, the user has beliefs about known locations in the environment,
expressed by the conditional probability

P(Location|UserType). (7)

For unfamiliar users we used a probability of 0.1 for every location in the environment,
and for familiar users we used a probability of 0.8 for landmarks asked by the system
(e.g., “Do you know how to get to the post room?”). By doing this, the learnt behavior for
familiar users would tend to ask for intermediate locations, and for unfamiliar users
would provide route instructions for the whole trajectory.

4.3. Experimental Results

Firstly, we observed that the learnt policies (using 1000 dialogues) generated behavior
equivalent to the dialogues shown in Tables I and IV. Secondly, Figure 3 shows the
learning curves of policies for all the test locations described in Figure 4, averaged
over 10 training runs. It can be observed that our proposed learning approach learns
much faster by reusing previously learned behavior. The fact that HSMQ-Learning
with policy reuse stabilizes its behavior much more quickly than HSMQ-Learning
without policy reuse, suggests that the former algorithm has promising application
for online user-machine interaction. This confirms our previously formulated hypoth-
esis that HSMQ-Learning with policy reuse is more suitable to optimize the behav-
ior of spatially-aware dialogue systems. With regard to the set of learning curves in
Figure 5, we can again observe the fast learning speed. We can also observe the signifi-
cant quality improvements for policies that can exploit intermediate landmarks (tasks
C, D, E) when the user is classified as familiar. This supports our remaining two hy-
potheses: a joint optimization of spatial and dialogue behaviors performs better than
isolated optimization (since otherwise the agent would not have knowledge of suitable
landmarks), and the agent learns to adapt its behavior to the prior knowledge of the
user. A remaining question is how slow/fast our proposed learning approach would be
perceived by real users. This question is addressed in the next section.

5. EXPERIMENTS USING A REALISTIC ENVIRONMENT

The main objective here was to show that our proposed approach, which is suitable for
spatially-aware dialogue systems, can be used in real time with real users, that is, after
a user’s query, the learning agent induces a policy using the simulated environment
in order to provide information to the user. For such a purpose we used a dialogue
system for interactive indoor wayfinding. To the best of our knowledge this is the first
reinforcement learning dialogue system using induced behavior in real-time.

5.1. Architecture of the Wayfinding Dialogue System

This dialogue system aims to provide users with route descriptions in English for
navigating inside buildings that are generally recognized as presenting significant
navigational challenges to both new and infrequent visitors. A pipeline architecture of
this system is shown in the high-level diagram of Figure 6.5 First, the user interacts

4We assume that it is not trivial to handcraft such beliefs for the whole spatial environment. In that case, the
system needs feedback about the given route instructions in order to infer beliefs about confusing locations
and known locations by the user. This is left as future work.
5A former version of our dialogue system using a simpler form of dialogue control is described in Cuayáhuitl
et al. [2010b].
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Table IV.
Sample dialogue showing the dynamics of policies of the right branch of the hierarchy. See Table I for the
corresponding dialogue acts, here only primitive/composite actions are shown

Policy:State Action (composite in italics) Utterance (user response in italics)
π0

0 : . . . greeting Welcome to the wayfinding info-kiosk.
π0

0 : . . . collectInformation
π1

0 : . . . request How can I help you?
How do I get to Dr. Watson’s office?

π1
0 : . . . clarify Do you mean James or Peter Watson?

Peter Watson
π0

0 : . . . provideInformation
π1

1 :0, 0, 0, 0, 0 rankIntermediateLocations
π2

0 :(2250, 1330), 2, 0, 0, 1 routeGeneratorArea j [high-level spatial behavior until goal]
π3

j :(2250, 1330), 2, 0, 0, 1 turnLeft, goStraight, ... [low-level spatial behavior until goal]
π1

1 :0, 0, 0, 2, 0 askIntermediateLocation Do you know how to get to
the stuga room?
No, I don’t know that

π1
1 :0, 3, 0, 2, 0 generateInstructions

π2
0 :(2250, 1330), 2, 0, 0, 0 routeGeneratorArea j [high-level spatial behavior until goal]

π3
j :(2250, 1330), 2, 0, 0, 0 turnAround, goStraight, ... [low-level spatial behavior until goal]

π1
1 :0, 3, 0, 2, 0 informQueryStatus OK, the following are your route

instructions.
π1

1 :0, 3, 0, 2, 1 verbalizeInstructions Turn around, then go straight on,
passing the glass door, until the
corridor. Turn left, and go straight
on, passing the message board on
your right until the stuga room.
Turn to the right, then go straight,
passing the glass door until
the end of the corridor.
Turn to the right, then go straight
until the door A3445 on your right.

π1
1 :2, 3, 0, 2, 1 askRepeatInstructions Do you want to hear the

instructions again?
No thanks

π0
0 : . . . askAnotherQuestion Do you have another question?

No, good bye
π0

0 : . . . closing Thanks for using the wayfinding
info-kiosk. Good bye!

with a Graphical User Interface (GUI) by asking questions about route directions us-
ing text-based natural language. Second, the language understanding module applies
OpenCCG parsing [Clark et al. 2002] and keyword spotting—the latter is used in
case of unparsed inputs—to the user utterance in order to extract a user dialogue act.
Third, the dialogue management module specifies the system’s behavior by mapping
knowledge-compact dialogue states (extracted from the knowledge base that maintains
the history of the interaction) to machine dialogue acts such as “request,” “clarify,”
“presentInfo” or “askIntermediateLocation.” Fourth, the language generation module
provides high-level route instructions through the use of pCRU6 that generates logical
forms that are then realized by the KPML language surface generator [Bateman 1997],
which in turn outputs text7 in the GUI. Note that the spatially-aware dialogue man-
ager interacts directly with the spatial data in order to perform a joint optimization

6pCRU is a probabilistic approach to resolving the nondeterminacy that typically arises in generation
between a semantic representation and its possible linguistic surface forms, see [Belz 2008].
7We use template-based generation for all remaining system moves, e.g. opening, closing, etc.
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Fig. 3. Learning curves comparing the performance of two hierarchical reinforcement learning algorithms
for spatially-aware dialogues in the wayfinding domain.

of dialogue and spatial behavior. For this purpose it uses the reinforcement learning
approach described in Section 3.3.

We tested our wayfinding dialogue system in a university building that is typically
considered complex to navigate. A map and a route graph of the environment are
shown in Figure 4, where the white spaces represent (in our scenario nonnavigable)
open spaces, a terrace and a courtyard. Although we only used data from a single floor,
navigation on multiple levels using our proposed approach is still attractive for its fast
learning (this may require an extra layer of models in the hierarchy).

5.2. Evaluation Methodology

We evaluated our dialogue system using objective and subjective metrics derived from
the PARADISE framework [Walker et al. 2000]. This framework is commonly used for
assessing the performance of spoken dialogue systems, and can be used for evaluating
spatially-aware dialogue systems.

The following quantitative metrics were used for evaluation: dialogue efficiency, task
success, and user satisfaction. First, the group of dialogue efficiency metrics includes
“system turns,” “user turns,” and “elapsed time” (in seconds), the latter included the
time it took the user to execute the task, that is, to find the given target destination.
Second, the group of task success metrics includes the typical binary task success
expressed as

BinaryTaskSuccess =
{

1 for finding the target location
0 otherwise. (8)

In addition, we used a graded task success metric which has shown higher correlation
with user satisfaction than the previous metric [Dethlefs et al. 2010], expressed as

GradedTaskSuccess =

⎧⎪⎨
⎪⎩

1 for finding the target location
2/3 for finding the target location with small problems
1/3 for finding the target location with severe problems

0 otherwise.
(9)
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Fig. 4. Map of the navigation environment including a superimposed route graph, where the route graph
specifies the navigational space and the white spaces represent open spaces, a terrace and a courtyard. The
black circles represent origin and destination locations used in the evaluation (task E corresponds to the
sample dialogues shown in Table I with initial orientation=“east” ).

We assign the value of 1 when the user finds the target location without hesitation,
the value with small problems when the user finds the location with slight confusion,
and the value with severe problems when the user gets lost but eventually finds the
target location. In both task success metrics, an experimental assistant, who followed
users during the navigation tasks, assigned the values at the end of each task. In a
correlation analysis between the assistant’s task success ratings and execution time,
we found a very high negative correlation (−0.96 at p < 0.05), which means that as the
graded task success score decreases, the execution time increases. This is an indicator
that the experimental assistant assigned reasonable scores. Finally, the group of user
satisfaction metrics is described in Table V.

5.3. Experimental Setup

Twenty-two native speakers of German (with an average age of 23.3), who were univer-
sity students enrolled in the “English-Speaking Cultures” course of studies, took part
in our evaluation. Each user was presented with six wayfinding tasks, resulting in a
total of 132 dialogues. They were asked in each case to find a particular location based
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Fig. 5. Learning curves (using the HSMQ-Learning algorithm with policy reuse) comparing two types of
behaviors for six navigation tasks: dialogue actions weakly coupled with spatial ones, and dialogue actions
tightly coupled with spatial ones. The latter learns to ask for Intermediate Locations (IL), which is not trivial
to specify. We can observe the quality improvements for policies that can exploit intermediate landmarks
(tasks C, D, E). See Table I for sample dialogues, and Figure 4 for an illustration of the navigation tasks.

Fig. 6. A pipeline architecture of our reinforcement learning dialogue system for indoor navigation.

Table V. Subjective Measures for Evaluating Indoor Wayfinding

Measure Question
Easy to Understand Was the system easy to understand?
System Understood Did the system understand what you asked?
Task Easy Was it easy to find the location you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
What to Say Did you know what you could write at each point?
System Response Was the system fast and quick to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you would use the system in the future?
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Table VI.
Average results of our dialogue system (see sample dialogues in Table I). Note:
we compared system performance for both user types. However, no significant
differences were found except for system/user turns and “system words per instruc-
tion set,” where familiar users received 18% fewer words than unfamiliar users (at
p < 0.01) at the cost of one extra system-user turn

Group Measure Average Result

Dialogue Efficiency

System Turns 6.30
User Turns 4.51
System Words per Instruction Set 51.30
User Words per Turn 3.79
Time (minutes:seconds) 2:23

Task Success Binary Task Success (%) 93.4
Graded Task Success (%) 86.9

User Satisfaction

Easy to Understand 4.52
System Understood 4.84
Task Easy 4.24
Interaction Pace 4.56
What to Say 4.74
System Response 4.48
Expected Behavior 4.40
Future Use 3.82
Sum 35.6/40

on the route instructions generated by the dialogue system on request of the user. The
system was located at a static point (marked “origin” on the map provided in Figure 4),
where users would return after each wayfinding task to request the next location. The
locations were spatially distributed (see Figure 4). The dialogue tasks were executed
pseudorandomly (from a uniform distribution), in order to prevent ordering effects on
the ratings of participants. In addition, we alternated the user type (familiar or unfa-
miliar), in the former the learning agent tended to ask for intermediate locations. At
the beginning of each session, participants were asked about their familiarity with the
building using a 5-point Likert scale, where 1 represents the lowest familiarity and 5
the highest. This resulted in an average familiarity score of 2.7. Then, our participants
received the following set of instructions: (a) you can ask the system using natural lan-
guage, (b) you can take notes from the received instructions, (c) follow the instructions
as precisely as possible, (d) you are not allowed to ask anyone how to get to the target
location, and (e) you can give up anytime after trying without success by telling that
to the assistant that will follow you. At the end of each wayfinding task, participants
were asked to fill a questionnaire (Table V) for obtaining qualitative results using a
5-point Likert scale, where 5 represents the highest score.

5.4. Experimental Results

Evaluation results of the system described in this section are summarized in Table VI,
where two main results can be drawn from this evaluation. First, reinforcement learn-
ing in real time—using our proposed approach—is feasible in terms of execution time.8
It can be observed that users rated the speed of system response with a score of 4.48
out of 5. Second, the spatially-aware dialogue behavior was considered reasonable by
the users. This can be noted from the metrics “easy to understand” and “task easy” with
scores of 4.52 and 4.24, respectively. It can also be observed that the lowest qualitative
score was given to the metric “future use” (3.82), presumably for the following reasons:

8Our learning dialogue system ran on a machine with minimal contemporary requirements. Specifically,
using a laptop with a core 2 duo processor and 2 GB of RAM, running Windows professional.
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(a) users may prefer maps over text; and (b) new or infrequent visitors to the building
may find the system more useful than users with partial knowledge of the building.

In addition, we compared system performance for both types of users. However, no
significant differences were found except for dialogue turns and “system words per
instruction set,” where familiar users received 18% less words than unfamiliar users
(at p < 0.01) at the cost of one extra system-user turn. Presumably, even when familiar
users received more compact instructions, they also had to navigate to intermediate
locations, resulting in task duration times that are equivalent to those of unfamiliar
users. Future work can evaluate in-situ dialogues and induce the user type/confusions
on the fly so that the learning agent can adapt accordingly.

Finally, we included an additional question in the survey filled after each dialogue:
“Did you find the location exclusively based on the instructions given by the sys-
tem or did you use additional help such as signs?” This question also used a 5-point
Likert scale, where 5 represents the highest score for strictly following only the system
instructions. This resulted in an average value of 4.2, suggesting that the results we
have given were derived from following almost entirely the system’s instructions.

6. RELATED WORK AND DISCUSSION

The interdisciplinary topic of this article addresses the fields of machine learning, dia-
logue systems, and spatial cognition. We discuss the following subjects to position our
article in the literature: (1) role of hierarchical control; (2) automatic route instruction
generation; (3) reinforcement learning dialogue systems; (4) spatially-aware dialogue
control using reinforcement learning; (5) reinforcement learning in real time, during
the course of the interaction; (6) joint optimization with other system modules; and
(7) simulated behavior for spatially-aware dialogue behaviors.

First, the importance of hierarchical learning is to perform a more scalable optimiza-
tion. This form of learning is also important to optimize decision making at different
levels of granularity, where the design of the subtask sequence might not be easy to
handcraft. For instance, in the wayfinding domain: When to ask for intermediate lo-
cations (which aim to provide compact route instructions)? What route to follow? This
scenario requires learning at low and high levels in the hierarchy to result in a unified
dialogue policy. Moreover, the importance of hierarchical learning increases according
to the complexity and size of the state-action space of a given system. This makes the
optimization of applications with large and complex behavior feasible, where the divi-
sion of a behavior into subbehaviors produces faster learning, reduces computational
demands, and provides opportunities to reuse subsolutions. The latter proved essential
for fast learning, which provides us with a mechanism for learning behavior in real
time. However, little attention has been given to hierarchical learning, which has been
mostly applied to small-scale dialogue systems using policies with frozen learning in
real time [Pineau 2004; Lemon 2010; Rieser and Lemon 2008; Janarthanam and Lemon
2010].

Second, adaptive route instruction generation in the spatial cognition community
has typically been oriented on the principles that humans employ in wayfinding, thus
making instructions cognitively adequate from a human perspective. Such principles
include the use of salient landmarks at decision points or along the route, spatial
chunking, or tailoring of instructions towards the spatial environment or different user
groups. Several approaches have taken such information into account for route gener-
ation. Richter and Duckham [2008] generated routes using the path that is simplest
to describe for the system. In contrast, Duckham and Kulik [2003] generated routes
using the path that is easiest for users to follow. While such approaches achieve align-
ment with human route descriptions, they only adapt to a majority of users. They fail,
however, to adapt to the information needs of specific individuals. For example, users
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familiar with the navigation environment might prefer a short, schematic description,
while unfamiliar users require more guidance. Similarly, familiar users might prefer
the shortest route to the destination, whereas unfamiliar users might prefer the easi-
est. There is no single route description that satisfies both users’ needs simultaneously.
Cuayáhuitl et al. [2010a] addressed the scenario of generating different types of routes
according to users’ familiarity with the navigation environment, but they did not take
into account dialogic interaction.

All of these systems include features of adaptation or cognitive and linguistic ade-
quacy that the present work will also need to address. However, they mostly focus on
route instructions in outdoor environments. Related work in indoor navigation has so
far put a strong emphasis on generating visual support for users, rather than opti-
mizing the content and form of route instructions or their textual choices. Kray et al.
[2005] presented an interactive display system that is mounted on walls and provides
visual navigation support to building users. Callaway [2007] presented a system that
assists users while navigating through an indoor environment, rather than providing
in-advance instructions. Münzer and Stahl [2007] describe modeling software that gen-
erates dynamic visual route information, and Hochmair [2008] reported on a desktop
usability study comparing various models of indoor navigation aids. Further, Becker
et al. [2008] and Ohlbach and Stoffel [2008] presented models for representing com-
plex spatial configurations adequately for navigation and route assistance. Kruijff et al.
[2007] presented a human-robot interaction scenario set within an office environment.
All of these approaches have put a primary focus on providing users with visual support
for their navigation environment. Further, they have tended to take the cognitive and
linguistic quality of their instructions for granted and do not include any of the adapta-
tion effects addressed briefly above and laid out in more detail in Section 2. Cuayáhuitl
et al. [2010b] presented a system for in-advance, text-based route instructions that
uses landmarks and spatial chunking, but they leave unaddressed the adaptation to
users’ information needs or prior knowledge.

Third, while we are not aware of any prior work that applied reinforcement learn-
ing to interactive wayfinding, there are several approaches in the dialogue community
that have applied it to information-seeking dialogue systems, or for the optimization of
decisions of content selection or information presentation. In the area of information-
seeking dialogue systems, Levin et al. [2000] presented a system that uses RL to
learn dialogue strategies in an air travel information system. Similarly, Walker [2000]
learned dialogue strategies for a spoken dialogue system that lets users access their
email over telephone, and Singh et al. [2002] optimized dialogue policies in a system
that provides information to tourists. Cuayáhuitl et al. [2010c] applied hierarchical
reinforcement learning to dialogue strategy learning in a spoken dialogue system op-
erating in the travel planning domain. While all of these systems use RL to optimize
aspects of system behavior, none of them is a situated dialogue system. Therefore, they
do not require knowledge that is peculiar to their domain of application, and they can
act blindly with respect to the current pragmatic situation of the dialogue. This is in
contrast to our own work.

Fourth, reinforcement learning in the language processing community has recently
been adopted for building adaptive human-machine conversational systems. While
most of the attention has been given to information-seeking dialogue systems, spatially-
aware dialogue systems have received little attention. For example, work at Karlsruhe
University has investigated human-robot interaction using reinforcement learning
[Stiefelhagen et al. 2007]; however, they do not provide a unified optimization be-
tween the dialogue and spatial behaviors. Our work addresses this latter issue, which
was crucial for our domain in order to provide adaptive spatially-aware behavior (e.g.,
by inducing wayfinding behaviors such as “Do you know how to get to the lifts?”),
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and can be applied to other dialogue systems requiring spatial awareness. We are not
aware of any other reinforcement learning dialogue system in the situated domain.
Other situated dialogue systems in the literature do not optimize dialogue behavior
and treat it independently of the spatial behavior. Examples of such kind of systems are
the WITAS dialogue system [Lemon et al. 2001], the DFKI’s human-robot interaction
dialogue system [Kruijff et al. 2007], or the Daisie framework for situated interaction
[Ross and Bateman 2009].

Fifth, our work differs from the work at Karlsruhe University by the use of dynamic
goal states, which require policy learning in real-time (after a user’s query such as
“How do I get to room B3044?”). If the dialogue system is aiming to provide adaptive
behavior to the user and environmental space, then the dialogue manager must be
tightly integrated with spatial behaviors. Our learning dialogue system is innovative
in policy learning in real time (using simulations). This is required for navigating
from any point in the space to any other, and to adapt to a dynamic environment. In
addition, in order to avoid learning from scratch, policy reuse has been addressed in
the literature, but only for flat reinforcement learning [Lemon et al. 2006; Fernández
and Veloso 2006]. Our learning approach is based on policy reuse for fast learning. We
are not aware of any other prior work with policy reuse in a hierarchical setting, and
much more remains to be done in this direction.

Sixth, it has been shown before that joint optimizations are better than independent
ones. For example, Lemon [2010] optimizes dialogue strategies with content selec-
tion strategies in a tourist information system. In addition, Janarthanam and Lemon
[2010] optimize a dialogue-generation policy that adapts its behavior to expert and
novice users with varying degree of technical terms. Our work also exhibits a joint
optimization between dialogue management and route instruction generation, where
our proposed learning approach provides the mechanisms for doing such joint opti-
mizations in a scalable way. We argue that the hierarchical setting plays an important
role for such a purpose in order to optimize more complex behaviors. For example, our
learning dialogue agent can jointly optimize confirmation strategies for spoken inter-
action [Cuayáhuitl et al. 2010c], natural language generation strategies for adaptive
text generation [Dethlefs and Cuayáhuitl 2010], and multimodal behavior [Prommer
et al. 2006; Wyatt 2005], among others.

Finally, a typical approach to model simulated user behavior is by estimating prob-
abilistic models (e.g., n-gram models) from data [Schatzmann et al. 2006]. However,
collecting data to estimate such models for spatially-aware dialogue behavior is more
difficult because of the vast amount of required data. In the particular case of wayfind-
ing, a potential approach is to estimate such conditional probabilities from in-situ
dialogues with real users, where the system would be aware of user confusions given
some spatial features and therefore keep an up-to-date model of the environment.
By estimating a more reliable model of the spatial environment, the learning agent
can adapt its behavior accordingly, and therefore make the reinforcement learning
approach more attractive for situated dialogue systems.

7. CONCLUSION AND FUTURE WORK

In this article we have described a hierarchical reinforcement learning approach for
optimizing the behavior of spatially-aware conversational interfaces, which performs
learning in advance (using a static simulation environment) and learning in real-time
(using a dynamic simulation environment). For such a purpose we extended an exist-
ing algorithm in the literature of reinforcement learning in order to support reusable
policies and therefore to perform fast policy optimization in real-time settings. We
evaluated our approach by incorporating it into a text-based dialogue system for in-
door navigation. The novelty in our dialogue system is the joint optimization in real
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time between dialogue and spatial behaviors, suitable for dynamic environments. Our
experimental results provide evidence to conclude that our reinforcement learning
approach is promising because it combines fast learning with adaptive and reasonable
behavior. This claim is supported by a quantitative evaluation reporting high binary
task success (93%) and a qualitative evaluation reporting high user satisfaction (89%).

This research makes the following contributions to situated dialogue systems that
learn their dialogue behavior. The first contribution is a reinforcement learning ap-
proach that jointly optimizes dialogue and spatial behaviors in real time. This ap-
proach is based on two fundamental concepts: hierarchical control and policy reuse.
While hierarchical control is used to simplify the problem by dividing a learning task
into subtasks, policy reuse is the mechanism used to accelerate learning. The second
contribution is the application of our proposed approach to a dialogue system in the
wayfinding domain. Our experiments show that this approach can be used to optimize
dialogue actions tightly coupled with spatial ones, resulting in a joint optimization
(which we call spatially-aware dialogue control). In addition, our proposed approach
was fast enough to guide users in navigation tasks without significant time delays,
according to our evaluation with real users. In summary, our unified and scalable
learning approach provides a framework that can be used to optimize more complex
behavior in different domains.

The work we have described opens an exciting direction for spatially-aware dialogue
systems using hierarchical reinforcement learning. We suggest the following research
avenues to make progress in this field:

—To induce reliable simulated environments for learning adaptive spatially-aware
dialogue behavior. A suitable computational approach to use is “Bayesian networks”
in order to integrate beliefs about dialogue and spatial knowledge.

—To evaluate our proposed reinforcement learning approach in other scenarios for
showing adaptive behavior to a changing spatial environment and to user’s prior
knowledge, where objects constantly change their level of salience. An example could
be in-situ dialogues (i.e., the system interacts with the user as he/she carries out the
navigation task) using a hand-held device and spoken interaction.

—To carry out joint optimizations with other behaviors such as confirmation strategies,
natural language generation and multimodal interaction.

—To constrain the spatially-aware dialogue behavior with some form of prior knowl-
edge and other forms of policy reuse, allowing further speed-up in learning. A poten-
tial approach to follow is hierarchical relational reinforcement learning.

—To investigate effective reward functions (induced from data) for spatially-aware
dialogue systems using hierarchical reinforcement learning. A potential approach
to follow is hierarchical model-based reinforcement learning. This is relevant since
large-scale joint optimizations make the reward function more complex to specify.

—To extend our proposed reinforcement learning approach with other approaches such
as function approximation and belief monitoring. While the former enhances scala-
bility, the latter is useful to support interactions under uncertainty.
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