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Abstract. We present a dialogue system that automatically generates
indoor route instructions in German when asked about locations, using
text-based natural language input and output. The challenging task in
this system is to provide the user with a compact set of accurate and com-
prehensible instructions. We describe our approach based on high-level
instructions. The system is described with four main modules: natural
language understanding, dialogue management, route instruction genera-
tion and natural language generation. We report an evaluation with users
unfamiliar with the system — using the PARADISE evaluation frame-
work — in a real environment and naturalistic setting. We present results
with high user satisfaction, and discuss future directions for enhancing
this kind of system with more sophisticated and intuitive interaction.

1 Introduction

Wayfinding in (partially) known environments poses a considerable challenge
for humans. This fact is not only confirmed by a substantial body of research
[1, 2] but also by the ubiquity and high demand for incremental navigation as-
sistance systems, as well as web-based services providing in-advance information
about routes. However, most information provided by such systems is tailored
for large-scale navigation using cars or public transport [3]. Indoor wayfinding
assistance is not a trivial issue and has not been addressed widely so far. Re-
lated work includes the following. Kray et al. [4] present an interactive display
system mounted on walls providing visual navigation support to building users.
Callaway [5] describes indoor navigation help while navigating rather than in-
advance directions as explored here. A modelling software proposed by Münzer
and Stahl [6] generates dynamic visual route information. Hochmair [7] reports
a desktop usability study comparing various modes of indoor navigation aids.
Becker et al. [8] and Ohlbach and Stoffel [9] present models for representing the
complex spatial configurations adequately for navigation and route assistance.
Kruijff et al. [10] present and discuss a human-robot interaction scenario set
within an office environment. Automatic systems generating natural language-
based route descriptions in-advance have therefore received little attention to
date.
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In the following we present a first substantial step in this direction: a dia-
logue system that automatically generates indoor route instructions in German
when asked about locations, using text-based natural language input and out-
put. The challenging task in this system is to provide the user with a compact
set of accurate and comprehensible instructions suitable for navigating in a com-
plex indoor setting. Our test environment is a campus building which, due to a
range of asymmetries and unconventional architectural features, poses a range
of navigational challenges.

2 System architecture

This dialogue system aims to provide users with route descriptions in German for
navigating in a particular building of our university that is generally recognised
as presenting significant navigational challenges to both new and infrequent vis-
itors. A pipeline architecture of this system is shown in the high-level diagram of
Figure 1. First, the user interacts with a Graphical User Interface (GUI) by ask-
ing questions about route directions using text-based natural language. Second,
the language understanding module applies OpenCCG parsing [11] and keyword
spotting — the latter is used in case of unparsed inputs — to the user utterance
in order to extract a user dialogue act. Third, the dialogue management module
specifies the system’s behaviour by mapping knowledge-compact dialogue states
(extracted from the knowledge base) to machine dialogue acts such as ‘request’ ,
‘clarify’ or ‘present info’. Fourth, the language generation module provides high-
level route instruction through the use of pCRU that generates logical forms that
are then given to the KPML language generator [12], which in turn outputs text
to be shown in the GUI (see Figure 2). Finally, the knowledge base maintains
the history of the interaction. These modules were integrated under the DAISIE
framework, which provides support for building situated dialogue systems [13].
These modules are described in more detail in the rest of this section.

Fig. 1. A pipeline architecture of our dialogue system for indoor wayfinding.
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Fig. 2. A screenshot of our text-based dialogue system for indoor wayfinding. A trans-
lation to English of this dialogue is provided in Table 2.

2.1 Natural language understanding

For parsing the textual user inputs we used the OpenCCG parser [11]. We use a
grammar for German and represent the user input in a structure called ‘Frame
Object Structure’ [14], using semantic types derived from the Generalized Upper
Model [15]. A sample structure for the sentence ‘Wie komme ich zu Raum a3440?’
(How do I get to room a3440?) is represented as

@g1:gs-NonAffectingDirectedMotion(gum-Coming ^

<uio-hasSurfaceFunction>uio-Wh-Question ^

<gum-actor>(p1:gum-ConsciousBeing ^ Pron) ^

<gum-processInConfiguration>(g2:gum-Process ^ gum-Coming) ^

<gs-motionDirection>(x1:gs-GeneralizedLocation ^

<gs-hasSpatialModality>(z1:gs-GeneralDirectionalNearing ^ zu) ^

<gs-relatum>(r1:slm-Room ^ Raum ^

<num>sg ^

<Modifier>(a1:slm-Office ^ a3440))))

In addition, we used a keyword spotter to identify locations in case of sen-
tences without parse in the CCG grammars. The task of the keyword spotter is to
identify names of locations or names of people and to treat the remaining words
as fillers. The output of this module is a user dialogue act represented by a used
dialogue act type (‘ask’, ‘provide’, ‘confirm’ , ‘silence’) and slot-value pairs. The
dialogue act for the sample above can be described as ‘ask(destination=room
a3440)’. We used the same format for describing system dialogue acts.
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2.2 Dialogue management

Our dialogue manager is based on the Markov Decision Process (MDP) model,
but we use a deterministic mechanism for action-selection. The MDP model is
used to optimize stochastic sequential decision making problems and is defined
as a 4-tuple < S, A, T, R >, where S is a finite set of states, A is a finite set of
actions, T is a state transition function, and R is a reward function. The solution
to an MDP is to find a policy π(s) that maps states s to actions a. Because we
use deterministic action-selection, we can omit the reward function. This form
of control is typically used as baseline for learnt dialogue strategies [16, 17].

We applied this model to our system as follows: (1) the space of dialogue
states is represented with a vector of state variables as shown in Table 1, (2) the
action space is represented with dialogue act types shown in Equation 1, (3) the
state transitions are modelled by observing dialogue states from the knowledge
base, and (4) the deterministic dialogue policy is defined in Equation 1. A sample
human-machine dialogue illustrating this form of interaction is shown in Table 2.
This dialogue is described with wordings in German and English and corresponds
to the dialogue shown in Figure 2.

Table 1. Representation of the dialogue state. Each state variable has either three or
four possible values, resulting in 35

× 42 = 3888 states.

Variable ID Domain Value

Salutation X1 0=null, 1=greeting, 2=closing
Origin X2 0=unknown, 1=requested, 2=known
Destination X3 0=unknown, 1=requested, 2=known
NumTuples X4 0=null, 1=one, 2=more-than-one
Instructions X5 0= unknown, 1=known, 2=provided
UserUtterance X6 0= unknown, 1=parsed, 2=unparsed, 3=spotted
MoreInstructions X7 0=null, 1=empty, 2=yes, 3=no

π(s) =















































































opening if s ∈ {0000000}
request if s ∈ {1000000, 1000012}
other request if s ∈ {1220210, 1220220}
query route if s ∈ {1220210, 1220220, 1110030, 1210030,

1220030, 1211030, 1221030}
present info if s ∈ {1221110, 1221130, }
clarify if s ∈ {1112100, 1112030, 1212030, 1222211, 1222231}
apologize if s ∈ {1110020, 1210020, 1220220, 1210210}
confirm if s ∈ {1112010, 1112030}
closing if s ∈ {1 ∗ ∗ ∗ ∗ ∗ 3}
wait otherwise

(1)
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Table 2. Sample dialogue in the wayfinding domain, where the dialogue state is formed
by the state variables shown in Table 1, and a set of actions (shown in Equation 1) is
available per state. The action-selection policy is defined by Equation 1.

Agent Dialogue State Action Sample Utterance

SYS 0000000 opening Willkommen beim <Hidden for Review> Infokiosk!
[Welcome to the <Hidden for Review> info kiosk!]

1000000 request Brauchen Sie eine Wegbeschreibung auf dieser Ebene?
Schreiben Sie Ihre Frage einfach in das Textfeld.
[Do you need a route description on this level?
Just write your question into the text field.]

USR Wo kann ich Raum 3180 finden?
[Where can I find room number 3180?]

SYS 1212030 clarify Ich habe folgende Raeume gefunden: b3180, a3180.
Welche von diesen suchen Sie?
[I have found the following rooms: b3180, a3180.
Which of these are you looking for?]

USR b3180

SYS 1220010 query route <query the route generation module>

SYS 1221110 present info Drehen Sie sich um und gehen Sie geradeaus bis
zu dem naechsten Gang auf der linken Seite.
[Please turn round and go straight on until
the next hallway on the left hand side.]
Drehen Sie sich nach links und gehen Sie bis
zu der Tuer B3180 auf der rechten Seite.
[Turn left and go until
the door B3180 on the right hand side.]

SYS 1220210 other request Sind noch Fragen offen? Brauchen Sie noch
eine Wegbeschreibung? Dann schreiben Sie
Ihre Frage wieder in das Textfeld.
[Do you have further questions? Do you need
another route description? In that case please
write your question again into the text field.]

2.3 Route instruction generation

Our system employs a computational process called Guard (Generation of Un-
ambiguous, Adapted Route Directions) [18] for generating context-specific route
instructions. Context-specific route directions account for environmental char-
acteristics and a route’s properties. They adapt communication to the action to
be taken in the current surrounding environment. Such instructions are termed
“context-specific” because of the explicit adaptation to the structure and func-
tion in wayfinding [19]. Guard unambiguously describes a specific route to a
destination, with instructions adapted to environmental characteristics. Selection
of the route is not part of Guard itself. Guard originally has been developed
for providing route instructions in outdoor environments. Figure 3 provides an
overview of the generation process.
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Fig. 3. Overview of Guard, the generation process for context-specific route directions.

Guard works on a network representation of paths in an environment. This
graph is annotated with information on landmarks, for example, their location
and shape. Guard accounts for different types of landmarks in generating in-
structions whose role in the route instructions depends on their location relative
to the route [20, 21]. Landmarks are associated with decision points based on a
heuristic that accounts for distance and potential obstruction. When generating
instructions, each associated landmark is tested for whether it can be used as a
reference object in the instruction, which depends on its functional role in the
given spatial configuration [21].

The generation of context-specific route instructions is a three-step process.
First, for every decision point of the route all instructions that unambiguously
describe the route segment to be taken are determined. This results in a set
of possible instructions for each decision point. Next, Guard performs spatial
chunking. Spatial chunking refers to combining instructions for several consecu-
tive decision points into a single instruction, for example, “turn left at the third
intersection” instead of ”straight, straight, left.” Guard is flexible with respect
to the principles used in chunking (e.g., [22, 3]). Finally, in the third step, the
actual context-specific route directions are generated. Here, from all possible in-
structions, those that best describe the route are selected. As this is realized as
an optimization process, “best” depends on the chosen optimization criterion.
Just as with the chunking principles, Guard is flexible with respect to the cri-
terion used. As a default, it aims for instructions that contain the least number
of chunks, i.e., that require the least number of individual instructions[18]. Opti-
mization results in a sequence of chunks that cover the complete route from origin
to destination. Due to the aggregation of instructions performed in chunking, in-
structions for some decision points will be represented implicitly, thus, reducing
the amount of communicated information.

In summary, the approach to context-specific route directions finds the best
instruction sequence according to the optimization criterion, but for a previously
given route. Recently, there has been work on using Guard’s principles in a path
search algorithm finding the routes that are also the easiest to describe [23].

2.4 Natural language generation

Generation of high-level instructions. Our approach for generating high-
level route instructions is described in Algorithm 1. Briefly, it operates with the
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following steps: (a) it receives the output of the route instruction generator; (b)
segments the received low-level instructions based on major changes of direction
such as left or right; (c) obtains a landmark and direction for the current segment;
(d) generates a turning instruction (cf. line 10); (e) generates a go instruction
until the current landmark (cf. line 11); (f) unifies the previous two instructions;
and (g) generates the language for the unified instruction (cf. line 13). Whilst
steps d and e are processed with the pCRUs described in the next subsection, step
g is processed with the KPML language generation system [12]. An example of
this process using ‘corridors’ as non-terminal landmarks is illustrated in Figure 4.

Algorithm 1 Generator of high-level textual route instructions

1: function GeneratorOfHighLevelInstructions(lowLevelInstructions)
2: segments ← segment low-level instructions based on major changes of

directions such as left and right.

3: for each segment do

4: if non-terminal segment then

5: landmark ← destination landmark for the current segment
6: else

7: landmark ← target destination
8: end if

9: direction ← direction of the current landmark (e.g. left, right, in front)
10: spl1 ← obtain a turning direction (e.g. turn around, turn left, turn right)
11: spl2 ← obtain a go direction to the landmark with corresponding direction
12: instruction ← aggregation of spl1 and spl2
13: Generate the textual description corresponding to the current instruction
14: end for

15: end function

Generation of routes with pCRU. For the generation of route descriptions,
we distinguish different route-associated actions that need to be performed in
different segments of a route, for example, turning actions or following actions.
While these could be verbalised by a template-based approach, we instead use
full NLG and aim to make our descriptions more natural by allowing appropriate
variation in the realisation of route segments, so as to reflect the same tendencies
found in human descriptions. We achieve this by using the pCRU framework
described in the rest of this section.

Probabilistic context-free representational underspecification (pCRU) [24] is
an approach to resolving the nondeterminacy that typically arises in generation
between a semantic representation and its possible linguistic surface forms. This
relationship is almost always one-to-many as can be illustrated by the following
example. Consider the following SPL [25], which serves as an input to the KPML
generation system [12].

(v0 / |space#NonAffectingOrientationChange|
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Fig. 4. Sample route with high-level instructions derived from applying Algorithm 1.

:|actor| ( hearer / |person| )

:|space#direction| (sd / |space#GeneralizedLocation|

:|space#hasSpatialModality| (lp / |space#LeftProjection| ) ) )

This semantic representation expresses a simple turning action to the left. A
small subset of possible realisations are (1)-(5) below, which differ along several
dimensions, such as the choice of speech function (imperative versus declarative),
tense (present versus present continuous), the phoricity of the direction attribute
(PP versus AP), or whether or not to use ellipsis or the exact choice of the verb.

(1) “Turn left.”
(2) “Turn to the left.”
(3) “You are turning left.”
(4) “Left.”
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(5) “Go left.”

Under the pCRU framework, we formalise the above variation in a context-
free grammar (CFG) consisting of a set of terminal symbols W, a set of nonter-
minal symbols N, a start symbol S with S ∈ N and a set of production rules R

of the form n → α, with n ∈ N, α ∈ (W ∪ N )* and W and N being disjoint.
This leads to the following CFG for a TurningSimple action.

TurningSimple = CONFIGTYPE PROCESS ACTOR SPEECHFUN TENSE DIR (0.7)

TurningSimple = CONFIGTYPE PROCESS ACTOR SPEECHFUN TENSE ":ellipsis full" DIR (0.3)

CONFIGTYPE = "|space#NonAffectingOrientationChange|" (1.0)

PROCESS = ":lex turn" (0.8)

PROCESS = ":lex go" (0.2)

ACTOR = "( hearer / |person| )" (1.0)

TENSE = ":tense present" (0.9)

TENSE = ":tense present-continuous" (0.1)

SPEECHFUN = ":speechact command" (0.9)

SPEECHFUN = ":speechact assertion" (0.1)

DIR = :|space#route| (gr / |space#GeneralizedRoute|

:|space#direction| (sd / |space#GeneralizedLocation| :phoric-q phoric

:|space#hasSpatialModality| (sm / LOCATION-DIRECTION ) ) (0.7)

DIR = :|space#route| (gr / |space#GeneralizedRoute|

:|space#direction| (sd / |space#GeneralizedLocation| :phoric-q notphoric

:|space#hasSpatialModality| (sm / LOCATION-DIRECTION ) ) (0.3)

This representation allows us to capture all arising variation within a single
formalism as well as control the application of the respective expansion rules by
attaching probabilities to them which indicate each rule’s probability of appli-
cation.

3 Dialogue system evaluation

This evaluation aimed to investigate the performance of our text-based approach
for indoor wayfinding. For such a purpose, the dialogue system described above
was implemented and tested with a set of users in a real building. This building
is complex to navigate; although it has several floors, only one floor was tested.

3.1 Evaluation methodology

We evaluated our dialogue system using objective and subjective metrics mostly
derived from the PARADISE framework [26]. This framework is commonly used
for assessing the performance of spoken dialogue systems, and can be used for
evaluating dialogue systems with different modalities in the wayfinding domain.

The groups of quantitative metrics are described as follows. First, the group
of dialogue efficiency metrics includes ‘system turns’, ‘user turns’, and ‘elapsed
time’ (in seconds). The latter includes the time used by both conversants, from
the first user utterance until the last system utterance. Second, the group of
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dialogue quality metrics consists of percentages of parsed sentences, sentences
with spotted keywords, and unparsed sentences. Third, the group of task success

metrics includes the typical binary task success expressed as

BinaryTaskSuccess =

{

1 for finding the target location
0 otherwise.

(2)

In this group we proposed two additional metrics in order to penalize the degree
of difficulty in wayfinding. The first is referred to as ‘3-valued Task Success (TS)’
defined as

3-ValuedTS =







1 for finding the target location
1/2 for finding the target location with small-medium problems

0 otherwise,
(3)

and the second is referred to as ‘4-valued task success’ defined as

4-ValuedTS =















1 for finding the target location
2/3 for finding the target location with small-medium problems
1/3 for finding the target location with severe problems

0 otherwise.
(4)

The value of 1 is given when the user finds the target location without hesitation,
the value with small-medium problems is given when the user finds the location
with slight confusion(s), and the value with severe problems is given when the
user gets lost but eventually finds the target location. Finally, the group of
quantitative metrics are described in Table 3. The sum of scores from these
metrics represents the overall user satisfaction score.

3.2 Experimental setup

Our experiments evaluated the dialogue system described above with a user
population of 26 native speakers of German. They were university students (16
female, 10 male) aged 22.5 on average. Each user was presented with six wayfind-
ing tasks, resulting in a total of 156 route dialogues. They were asked in each
case to find a particular location based on the route instruction generated by the
dialogue system on request by the user. The locations were spatially distributed.
Two tasks used 2 High-Level Instructions (HLIs), two tasks used 3 HLIs, and two
tasks used 4 HLIs. The dialogue tasks were executed pseudorandomly (from a
uniform distribution). At the beginning of each session, participants were asked
about their familiarity with the building using a 5-point Likert scale, where 1
represents the lowest familiarity and 5 the highest. This resulted in a familiarity
score of 2.4. Then, our participants received the following set of instructions: (a)
you can ask the system using natural language, (b) you can take notes from the
received instructions, (c) follow the instructions as precisely as possible, (d) you
are not allowed to ask anyone how to get to the target location, and (e) you
can give up anytime after trying without success by telling that to the assistant
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that will follow you. At the end of each wayfinding task, participants were asked
to fill a questionnaire (Table 3) for obtaining qualitative results using a 5-point
Likert scale, where 5 represents the highest score.

Table 3. Subjective measures for evaluating indoor wayfinding, adapted from [26].

Measure Question

Easy to Understand Was the system easy to understand?
System Understood Did the system understand what you asked?
Task Easy Was it easy to find the location you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
What to Say Did you know what you could write at each point?
System Response Was the system fast and quick to reply to you?
Expected Behaviour Did the system work the way you expected it to?
Future Use Do you think you would use the system in the future?

3.3 Experimental results

According to dialogue efficiency metrics, it can be observed from Table 4 that
the user-machine interactions involved short dialogues in terms of system turns,
user turns and time. These results suggest that once users receive instructions
to find a given location, they tend not to ask further questions. We can also
observe a large number of words per system turn mostly due to the textual
instructions, where the longer the number of high-level instructions the longer
the textual output. In addition, although some users used only keywords in the
textual input, overall they asked questions.

According to dialogue quality, it can be noted that our grammars did not
have wide coverage. There are many different ways to ask for a given location,
including sentences with ungrammatical structures and sentences with words ab-
sent in the lexicon. However, the keyword spotter then was crucial for identifying
the users’ target location.

According to task success, our dialogue system obtained a very high binary
task success, but this measure does not take into account how hard it was for the
user to find the given locations. In contrast, whilst our 3-valued task success mea-
sure penalizes more strongly, our 4-valued task success measure is between the
other two metrics. From these metrics, we found that the latter generated more
faithful scores because it predicts more closely user satisfaction. This argument
can be validated with statistical analysis, but this is left as future work.

Our qualitative results report very high scores for user satisfaction, mainly
for the dialogues with 2 High-Level Instructions (HLIs) and 3 HLIs. However,
users found it harder to follow the dialogues with 4 HLIs. One can think that
the reason was due to the length of the instructions, but we observed that it
was more due to ambiguity in which corridors to follow. The lower scores in the
following qualitative metrics support this argument: easy to understand, task
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easy, expected behaviour and future use. Nevertheless, we found that a dialogue
system for indoor wayfinding using language processing capabilities — with only
text input and output — can obtain very high overall scores in user satisfaction.

Table 4. Average results of our wayfinding system for dialogues with different amounts
of High-Level Instructions (HLIs), organized according to the following groups of met-
rics: dialogue efficiency, dialogue quality, task success and user satisfaction.

Measure 2 HLIs 3 HLIs 4 HLIs All
(52 dialogues) (52 dialogues) (52 dialogues) (156 dialogues)

Avg. System Turns 2.25 2.38 2.28 2.30
Avg. User Turns 1.30 1.61 1.64 1.52
Avg. System Words per Turn 34.05 40.04 49.59 41.30
Avg. User Words per Turn 4.06 5.34 4.84 4.79
Avg. Time (in seconds) 20.69 19.77 25.87 22.14

Parsed Sentences (%) 23.8 4.3 22.5 16.7
Spotted Keywords (%) 74.6 91.4 73.2 79.9
Unparsed Sentences (%) 1.6 4.3 4.2 3.4

Binary Task Success (%) 96.2 100.0 88.5 94.9
3-Valued Task Success (%) 92.3 88.5 63.5 81.4
4-Valued Task Success (%) 94.9 92.3 75.6 87.6

Easy to Understand 4.65 4.6 4.08 4.46
System Understood 4.71 4.62 4.62 4.65
Task Easy 4.60 4.54 3.73 4.29
Interaction Pace 4.71 4.65 4.52 4.63
What to Say 4.71 4.63 4.65 4.66
System Response 4.60 4.62 4.58 4.56
Expected Behaviour 4.64 4.50 4.21 4.45
Future Use 4.46 4.37 4.12 4.31
User Satisfaction (sum) 37.1 36.5 34.5 36.0
User Satisfaction (%) 92.7 91.2 86.3 90.0

Finally, we included an additional question in the survey filled after each
dialogue: ‘Did you find the location only based on the given instructions by the
system or did you use additional help such as signs?’ This question also used a 5-
point Likert scale, where 5 represents the highest score for strictly following only
the system instructions. This resulted in an average value of 4.3, which suggests
that the results described above were derived from following almost entirely the
system’s instructions.

4 Conclusions and future work

In this paper we have presented a dialogue system for indoor wayfinding in a
complex building using text-based natural language input and output. The sys-
tem was described with four main components: natural language understanding,
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dialogue management, route instruction generation and natural language gener-
ation. In the latter we described our approach based on high-level instructions. A
key advantage of our dialogue system is its support for language-independence,
only parsing and generation grammars have to be added in order to support a
new language, the rest is reused. Experimental results — using the PARADISE
evaluation framework — in a real environment with 26 participants (156 dia-
logues) provide evidence to support the following claims: (a) text-based dialogues
resulted in very short interactions, they mostly consist of question and answer,
though eventually clarifications or apologies occurred; (b) keyword spotting was
an essential component to assist the parser with unparsable utterances; (c) our
proposed 4-valued task success metric predicts better user satisfaction than bi-
nary task success or 3-valued task success; and (d) a text-based dialogue system
for indoor wayfinding can obtain very high overall scores in user satisfaction. To
the best of our knowledge, this is the first evaluation of its kind in the indoor
wayfinding domain.

We suggest the following avenues for future research:

First, text-based language processing, spoken language processing and graph-
ical interfaces (such as maps) can be combined into principled frameworks for
building effective wayfinding systems. Such systems should be evaluated as in
this paper in order to assess the performance across different system versions.
In this way, systematic evaluations can be made by varying different conditions
under a given framework. This is an important and useful step to take that has
not so far been achieved in indoor navigation.

Second, the dialogue manager is responsible for controlling the system’s dia-
logue behaviour. When the system’s behaviour becomes complex, it is less recom-
mendable to use hand-crafted behaviour because it is non-adaptive and labour
intensive. Machine learning methods such as reinforcement learning can be used
to induce the system’s behaviour automatically [27, 17, 28]. This is relevant for
learning adaptive and complex behaviour such as learning to ground, learning
to clarify, learning to present information, learning multimodal strategies and
learning to negotiate route directions.

Third, in the case of indoor route directions, future work can entail covering
paths that cross multiple floors. This will require both handling a graph with
dedicated transition nodes between floors and a clear communication of floor
changes in the route directions. In the present work, we used corridors as main
landmarks; however, a principled mechanism to rank indoor landmarks can be
investigated. In addition, providing route instructions for new spatial environ-
ments is possible by providing spatial representations of additional environments
in the form of a route graph.

Finally, future work in language generation can aim to enhance the adaptive-
ness of route descriptions along three dimensions: (a) to make descriptions more
tailored towards a particular user by taking their familiarity of the environment
into closer consideration [29]; (b) to present information for users with differ-
ent cognitive styles for users familiar or unfamiliar with a given environment
[30, 31, 32]; and (c) to investigate how to incorporate interactive alignment [33].
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