
Modularity Within Artificial Gene Regulatory
Networks

1st George Lacey
Computer Science
University of Hull

Hull, UK
G.A.Lacey@2014.hull.ac.uk

2nd Annika Schoene
Computer Science
University of Hull

Hull, UK
A.M.Schoene@2017.hull.ac.uk

3rd Nina Dethlefs
Computer Science
University of Hull

Hull, UK
n.dethlefs@hull.ac.uk

4th Alexander Turner
Computer Science
University of Hull

Hull, UK
alexander.turner@hull.ac.uk

Abstract—Modularity is a feature of found in biological sys-
tems where it is common for functionally related processes to
evolve to be individually discrete units. Such traits are prevelant
in prokaryotic genomes. This work aims to understand to
what extent artificial gene regulatory networks AGRNs, which
take inspiration from gene regulation in nature will self-divide
into modular task specific sub-networks consisting of multiple
interacting nodes when solving multiple complex tasks. To
investigate this, we evolve AGRNs to solve three different tasks
with ranging dynamics simultaneously and evaluate the network
structure. From this we aim to build an understanding of whether
modularity in AGRNs is fundamental to solving multiple tasks
and what effect the nature of the tasks being solved has on
modularity within the networks.

Index Terms—gene regulation, evolutionary algorithms, mod-
ularity

I. INTRODUCTION

Gene regulatory networks are fundamental to the home-
ostatic regulation of cellular functions. Biological cells ex-
hibit properties such as robustness and adaptability which
has resulted in many disciplines attempting to capture and
model these behaviours and traits insilico [1], [29]. There
are two principle reasons for this. The first is to experiment
with this systems to better understand their behaviour and
biological underpinnings [2], [3], [10]. The second is to exploit
these features to build effective and robust machine learning
techniques, typically for the solving of complex tasks and the
analysis of complex systems [9], [10], [13]–[15]. This work
focuses on the latter.

Gene in nature which are related in function often occur
close to each other in the genome. This is because, particularly
in prokaryotic gene regulation, it is often more efficient to
transcribe related genes all at once. The close proximity of
genes in this way is know as gene linkage or gene clustering
[7]–[10]. Because of this, such structures are often preserved
from an evolutionary perspective as they are both beneficial
and efficient.

In this work, we consider how artificial gene regulatory net-
works (AGRNs) evolve to solve multiple complex problems,
and how the structure of the networks changes in reference
to modularity, and if this is dependent of the task being
solved. In terms of modularity, we are specifically looking at
to what degree nodes within the AGRN segregate themselves

depending on the task for which they are applied, and wether
nodes are shared between tasks. We will use three tasks for
which the AGRNs will be applied. The pendulum cart task,
the double pendulum task and the mountain car task. All of
these taks are part of the openAI gym package [11], designed
to test artificial intelligence techniques.

II. BIOLOGICAL GENE REGULATION

Gene regulation in nature is the process of either inducing
or repressing the expression of a gene. A gene is a region of
DNA for which a functional genetic unit can be transcribed.
Transcription is the process of copying a segment of DNA into
an RNA sequence, and is typically the first process of gene
regulation. A gene can be thought of as a unit of heredity.
An example of gene regulation can be found within the
functionality of operons, which are sections of DNA that allow
for the transcription of a set of genes that are usually related
in their functionality. The operon can be itself considered a
functional unit of modularity. RNA polymerase binds to the
promoter region of an operon in order to transcribe the gene(s);
however, transcription may be inhibited by the operator of
the operon if bound to by a transcription factor known as
a repressor. Transcription factors are proteins that control the
transcription of genes, such as activators that bind to a site next
to the promoter in order to increase the rate of transcription
[24]–[26]. For homeostasis to occur within an organism, the
macro molecules associated with gene expression must be
finely regulated.

There are many different processes which typically regulate
gene expression [34]–[37]. One of the most prominent is
tanscriptional modifications, such as the prevention of binding
of transcription factors. Other such modifications are post-
transcriptional modifications and translation modification. Al-
though these processes are complex, gene expression is fun-
damentally robust to perturbations, maintaining homeostasis
under a wide range of varying conditions [27]. One example
of this is the E. coli bacterium, where the lactose operon allows
the bacterium to use lactose as a fuel source when it is present
and glucose is not [27], [28].

A genetic network can be considered a weighted graph,
where each nodes is a gene, and the weight is a product of the
influence one gene has upon another. Gene regulation possess

Fig. 1. An abstraction form [12] which shows modularity in the yeast protein
network, for which many of the genes located close together are functionally
related.

some of the properties which would be advantageous to
abstract over to insilico devices. Their adaptability, robustness
and stability over time make this process an idea candidate
to study from a computational perspective, specifically for
the control of complex systems. In addition, because their
structure can be abstracted down to a weighted graph, this
can be simply incorporated into a computational system.

A. Evolution

Evolution is the process of change over time, and from
a biological perspective is the heritable adaptation of an
organism over successive generations [30], [31]. Biological
evolution is focused on the DNA molecule which holds the
information in which to code for proteins and other macro
molecules used by a cell. Evolution to an extent exploits the
robustness of gene regulation to allow for modification to
produce meaningful, but non lethal change [1], [16]–[18]. That
is, in general and organism can have its DNA modified without
fatal consequences. Modularity is one of the features which
makes this possible [23]. In addition, redundancy is a feature
where genes or operons are encoded by more than one DNA
segment, therefore if one becomes damaged, the other can
maintain functionality. Another feature is decoupling, which
specifies that the phenotype of an organism is not directly
encoded but its a specified by an intermediary which is the
type frequency of macro molecules in the cell provided by the
transcription of the genome.

For the AGRNs to evolve well, they must abstract in
part some of the appropriate properties of gene regulation
in biology to ensure robustness throughout the optimisation
processes [32], [33].

III. ARTIFICIAL GENE REGULATORY NETWORKS

Artificial gene regulatory networks (AGRNs) are computa-
tional models that take inspiration from biological gene regu-

Fig. 2. The sigmoid function which is at the core of each gene. The slope
can be modified by the slope and offset parameters in the genes to change
the characteristics and regulatory function of the genes

lation and are designed for problem solving. They have been
shown to be particularly adept at solving complex time-series
tasks [19]–[21]. They consist of a set of indexed nodes, each
with a parameterised regulatory function which is typically
a sigmoid function (Figure 2). The parameters can be seen
in Table III. The networks state is a function of the nodes
underlying expression levels, which are real number values in
the range of 0-1.

In this work the connectivity of the nodes within the AGRN
are represented using 2-dimensional virtual space, with each
node having a position defined by its position and length vari-
ables shown in Table III. The ‘Position’ parameters determine
the position of the centre point of the node, and the ‘Length’
parameters determine the extent to which each node’s space
extends from the centre point into the appropriate dimensions.
If the areas of two genes overlap, then they are connected. An
example of node connectivity is shown in Figure. 3.

Algorithm 1 displays how AGRNs execute. During the first
iteration the nodes are initialised by setting their parameters to
random values within the corresponding ranges (Table III). At
each iteration the task observations are mapped onto the input
nodes (replacing the random values in the first iteration), where
the task observations are transformed to valid expression
levels if required. The expression levels of the nodes are then
calculated based on the expression levels from the previous
iteration. The expression levels of the output nodes from
the network are used to control the tasks, by mapping and
transforming them to a value within the ranges of that specified
task. The AGRN’s behaviour is an emergent property of the
functionality of its underlying genes.

Formally, this AGRN architecture can be defined by the
tuple 〈G,L, In,Out〉, where:
G is a set of genes {n0 . . . n|N | : ni = 〈ai, Ii,Wi〉} where:

ai : R is the activation level of the gene.
Ii ⊆ G is the set of inputs used by the gene.
Wi is a set of weights, where 0 ≤ wi ≤ 1, |Wi| = |Ii|.

L is a set of initial activation levels, where |LN | = |N |.
In ⊂ G is the set of genes used as external inputs.
Out ⊂ G is the set of genes used as external outputs.

f(x) = (1 + e−sx−b)−1 (1)

x =

n∑
j=1

ijwj (2)

Name Type Range
Expression Real [0,1]

Weight Real [0,1]
Slope Real [0,20]

Sigmoid offset Real [0,1]
Position X Real [0,1]
Position Y Real [0,1]
Length X Real [0,0.5]
Length Y Real [0,0.5]

TABLE I
THE VARIABLES HELD WITHIN EACH GENE WITHIN THE AGRN. THE

WEIGHT, SLOPE AND OFFSET ARE USED IN THE FUNCTION (1) (FIGURE 2)
IN WHICH TO DEDUCE A GIVEN GENES’ EXPRESSION. THE POSITION AND
LENGTH VARIABLES DEDUCE WHICH GENES ARE CONNECTED TO WHICH

BASED UPON THE PROXIMITY OF THESE VALUES.

Fig. 3. Illustration of two connected nodes. The outer blue and red rectangles
represent the whole nodes, the inner black rectangles represent the centre point
of each node. The centre point of the blue node exists within the space of the
red node, meaning that the blue node acts as an input to the red node.

Algorithm 1 Execute AGRN on a task
1: for x = 1→ Number of iterations do
2: if x is 1 then
3: Initialise nodes randomly
4: end if

5: Scale task observations to 0,1
6: Map task observations to input nodes

7: for x to numberofnodes do
8: Initialise nodes randomly
9: end for

10: Scale outputs to task range
11: Map output nodes to task actions
12: end for

IV. TASKS

The AGRNs will be applied to solve three independent tasks
within the same network. The focus of this work is to look
at the modularoty and the connectivity of AGRNs which can
solve multiple tasks. To achieve this, we use three different
tasks which require a range of dynamics to solve completely
and will all be independent. All of these tasks are from the
openAi gym [11].

A. Pendulum cart task

The pendulum task shown in Figure 4 is a real time control
task. The objective of the task is to move the cart in a
1-dimensional space to ensure that the pendulum remains
upright. The movement of the pendulum must be monitored
in order to enact counter-movements to stabilise it. The
movement of the cart is controlled using two discrete actions
shown in Table II, one which moves it left, and one which
moves it right at a constant speed. The four observations of
the task are taken from the position and velocity of the cart,
as well as the angle and velocity of the outward end of the
pendulum as shown in Table III. If the pendulum pivots too far
in either direction, the cart moves too far in either direction,
or the task runs for 500 time steps it will cease execution. The
reward is determined by the duration the task remains active.

Fig. 4. Illustration of pendulum cart task. The pendulum has pivoted
counterclockwise from the upright position. The cart could be moved to
the left to correct this. The overall objective of this tasks is to maintain the
pendulum in the upright position for as long as possible.

TABLE II
ACTIONS OF THE PENDULUM CART TASK

Name Type Values
Cart control Discrete 0 (Left), 1 (Right)

TABLE III
OBSERVATIONS OF THE PENDULUM CART TASK

Name Type Min Max
Cart position Real 0 1
Cart velocity Real -10 10
Pole angle Real 0 360

Pole velocity Real -20 -20

B. Double pendulum task

The double pendulum task, shown in Figure 5 is another
dynamic control task. A double pendulum pivots around a
fixed point, and by controlling only the second joint the double

pendulum must be moved so that the outer end of the outer
pendulum reaches a fixed height. The height is represented by
the dark blue horizontal line in the illustration.

Fig. 5. Illustration of the double pendulum task. In this instance, the outer
pendulum has reached the height indicated by the horizontal line so the task
has been completed. The reward of this task is related to the amount of time
that is taken to achieve this

TABLE IV
ACTIONS OF THE DOUBLE PENDULUM TASK

Name Type Values
Torque Discrete -1 (Negative torque), 0 (No torque),

1 (Positive torque)

TABLE V
OBSERVATIONS OF DOUBLE PENDULUM TASK

Name Type Min Max
Cosine of first joint angle Real -1 1

Sine of first joint angle Real -1 1
Cosine of second joint angle Real -1 1

Sine of second joint angle Real -1 1
First joint velocity Real −4π 4π

Second joint velocity Real −9π 9π

The movement of the double pendulum is controlled a single
discrete action, shown in Table IV. Torque may be applied to
the second joint via this action causing the outer pendulum to
swing clockwise or counter-clockwise.

The six observations of the task, shown in Table V are taken
from the sine and cosine of the angles of the two joints as
well as the rotational velocity of the joints. The reward is
determined by the time it takes for the pendulum to reach the
fixed height, and the task will stop after 500 time steps.

C. Mountain car task

The mountain car task, shown in Figure 6 consists of a car
that must gain enough momentum to reach the goal, at the top
of a mountain. The car is not powerful enough to accelerate
straight up to the goal, so must travel backwards and forwards
in order to gain enough momentum. The movement of the car
is controlled a single discrete action, shown in Table VI. The
car can accelerate left, right, or not at all via the action.

Fig. 6. Illustration of the mountain car task. The car is at its starting position
between the two mountains. The car must gain momentum to reach the goal
indicated by the green flag at the summit of the mountain on the right.

TABLE VI
ACTIONS OF MOUNTAIN CAR TASK

Name Type Values
Torque Discrete 0 (Move left), 1 (Don’t move),

2 (Move right)

The two observations of the task, as shown in Table VII are
taken from the position and velocity of the car. The reward is
based on the progress of the car, the closer the car gets to the
goal, the higher the reward will be. The reward is subject to
penalisation based on the duration the task runs for, and the
reward is proportional to the amount of time taken to complete
the task.

D. Mapping tasks to AGRN

The AGRNs in this paper will be trained to solve three
completely independent tasks simultaneously. Each task’s en-
vironment provides observations and a means for the AGRN
to evoke an action. Each observation is mapped onto a
separate input node chosen randomly before the network starts
evolving. The expression of the input nodes is set to the
observation of the respective task in which it is an input for.
Observations that are not already represented by real numbers
ranging between 0 and 1 are normally transformed to fit these
criteria. Similarly, a randomly selected node from the network
will act as the network output, for which the expression of that
gene will be mapped back to the environment. The observation
and output mapping is done randomly once at the start of
the experimentation, and once assigned, they do not change
throughout the optimisation process.

V. EXPERIMENTATION

A mutation only genetic algorithm (Algorithm 2) will be
used to evolve the AGRNs with a population size of 1000.
This is to provide a level of transparency over the optimisa-
tional process which allows the inspection and analysis of a

TABLE VII
OBSERVATIONS OF MOUNTAIN CAR TASK

Name Type Min Max
Position of car Real -1.2 0.6
Velocity of car Real -0.07 0.07

specific AGRN during optimsation. If crossover was permitted,
significant parts of the network would be recombined, and the
genotyoe to phenotype mapping would be difficult to analyze
over just a few generations. Moreover, in this work we are
not motivated by objective performance of the networks or
the optimsation process, as long as the networks are able to
solve the three tasks. Hence, the trade off between potential
loss of speed and performance is beneficial for the tractability
of the evolutionary process. During the mutation operation, the
parameters of each node within the network have a chance of
being set to a random values according to a normal distribution
centered around the current value. (or ‘mutated’). At each
iteration of the algorithm, the best 10 will be immediately
copied to the child population. This concept is known as
‘elitism’ and guarantees that the best networks will not be
lost due to random chance. The fitness of a give AGRN will
be the sum of its performance on all three tasks.

Algorithm 2 Execute mutation only genetic algorithm
1: P ← {} {Initialise empty initial population}

2: for x = 1→ Population size do
3: P ← P ∪ Randomly initialised AGRN
4: end for

5: for y = 1→ Number of generations do
6: for all p ∈ P do
7: EVALUATE(p)
8: end for

9: Q← {} {Initialise empty child population}
10: Q← Q ∪ Elite members
11: repeat
12: Q← Q ∪ TOURNAMENT SELECT(P)
13: until |Q| is Population size
14: P ← Q

15: Mutate population
16: end for

Only AGRNs that solve all 3 tasks are useful for testing,
so networks that do not fit this criteria will not be analysed
in this work. In total, each network has 18 nodes, consisting
of 12 input nodes, 4 for the pendulum cart task, 6 for the
double pendulum task and 2 for the mountain car task. There
will be three output nodes, one for each tasks, as well as 3
general processing nodes for the AGRNs to use to process the
information.

Networks often evolve to function without utilising all of
their nodes,in these cases it is beneficial to remove redundant
nodes in order to simplify analysis. This process is shown
in Algorithm 3, where each node is disabled in turn, and
if the performance does not decrease the node is effectively
removed from the network by preventing its expression level
from affecting other nodes.

Algorithm 3 Purge nodes from network
1: t← Threshold
2: b← Simulate network {Base performance}
3: N ← Network nodes

4: for all n ∈ N do
5: N ← N \ {n} {Remove node from network}
6: p← Simulate network {Performance without node}
7: if p < b− t then {Performance decreases}
8: N ← N ∪ {n} {Replace node}
9: end if

10: end for

0 20 40 60 80 100

1*
2**

3

% of non-interfering nodes

Ta
sk

Fig. 7. Box plot of the percentage of non-interfering nodes of each task
within the networks. *All values are equal to 1 except outliers. **Median and
upper quartile are equal to 1. It can be seen that there is a clear difference
between the three tasks in reference to the amount of interfering nodes within
the AGRNs that solved them. This indicates that modularity within the tasks
may be a result of they dynamics and complexity of the task its solving.

0 20 40 60 80 100

1
2
3

92.5

85.4

56

% of non-interfering nodes

Ta
sk

Fig. 8. Bar plot of the average percentage of interfering nodes based on
task. This data is a transformation of the data found in Figure 7, and clearly
highlights the difference in non-interfering nodes between the three tasks.

VI. RESULTS

The networks were trained to solve three independent tasks:
• Task 1 - The pendulum cart
• Task 2 - The double pendulum
• Task 3 - The mountain car
The networks will be analysed based on how they interact

with each task. Nodes from the network that were mapped
onto the task observations or task actions are said to belong
to that task. Nodes that do not belong to any task are referred
to as ‘processing nodes’, as no external value is mapped
onto or set from them. The connections between nodes were
analysed in order quantify the clustering of the networks.
Each task has a separate action, mapped from an action node
within a network. Therefore, if a node connects directly to the
corresponding action node, it must influence the task in some

way. Additionally, nodes that indirectly connect to the action
node via a connecting node may influence the task.

In order to show how networks internally organise them-
selves, the nodes connecting to each action node were split
into three groups: the observation nodes belonging to that task,
processing nodes, and nodes belonging to other tasks. Nodes
belonging to other tasks will be referred to as ‘interfering
nodes’, as it is unlikely that their influence is beneficial as
their expression level is not based on the task in question. The
exception to this is an action node that could be influenced by
an observation node belonging to the correct task; however,
because all of the tasks must be solved to some degree it is
likely that action nodes in this position will also be influenced
by an observation node belonging to it’s own task, and will
therefore cause interference anyway.

For each network, the percentage of non-interfering nodes
connected to the action node of each task was calculated.
This is simply the percentage of connecting nodes that are
observation nodes (belonging to the same task) or processing
nodes. The results are plotted in Figure 7 and the averages
in Figure 8. On the surface, the results show that networks
typically do organise themselves based on the three tasks as
expected, where tasks one and two in particular have a low
number of interfering nodes on average, this is also true for
task three but to a lesser degree.

There are multiple possible reasons for the discrepancy
amongst tasks, it could be the case that interference affects
simpler tasks less, as they have simpler dynamics so do not
require as much control. This would make sense in this case as
the mountain car task is the simplest task as it only requires
basic movement, and in theory can be solved solely based
on the position of the car. The pendulum cart task had a
much lower amount of interference on average and is a more
complicated task, as the angle and velocity of the pendulum
must be monitored so that it can be stabilised, the position
of the cart must also be monitored so that it does not go out
of bounds. Similarly, the double pendulum task requires that
the angles and velocities of the two pendulum are monitored
so that the correct swinging motion can be enacted in order
to move it to the correct position to solve the task. Each task
provides a reward that represents how successful the networks
are at completing it. The means of calculating this differs
amongst the tasks, and the total pendulum cart reward is
calculated as the duration that the pendulum remains balanced,
whereas the other tasks are penalised based on how long it
takes for the task to be completed. It is possible to receive the
maximum reward for the pendulum cart task, but infeasible
for the others. This could result in the networks favoring the
tasks with a lower realistic upper reward bound.

A network with no interference is shown in Figure 9, and the
connections in Table VIII. The nodes acting as input to the task
action nodes are all observation nodes belonging to the same
task, and the processing nodes connecting to task nodes do not
take any input from other tasks. Whilst this network would be
much easier to analyse, complex networks are highly unlikely
to develop in this way, as its subtasks will not be completely

Fig. 9. Layout of network with no interference, each coloured rectangle
represents a node belonging to a specific task. Pink nodes belong to no task.

TABLE VIII
DISPLAY OF NODE CONNECTIONS FOR NETWORK WITH NO

INTERFERENCE.

Task Task nodes Processing nodes Other task nodes
1 0, 2, 3 16 none
2 8, 9 none none
3 11 15, 17 none

independent. A network with high levels of interference is
shown in Figure 10, and the connections in Table IX, despite
the interference, the network performs as well as the network
with no interference due its robustness.

The performance of networks has been plotted against the
average percentage of non-interfering nodes in Figure 11. It
might be assumed that networks with less interference perform
better; however, this is not the case. There are networks that
perform well and poorly with a range of interference.

TABLE IX
DISPLAY OF NODE CONNECTIONS FOR NETWORK WITH HIGH

INTERFERENCE.

Task Task nodes Processing nodes Other task nodes
1 2, 3 15, 16, 17 9, 10, 13
2 9 none 10
3 10, 11 none 0, 9, 13

VII. CONCLUSION

In this paper, we optimised artificial gene regulatory net-
works (AGRNs) to solve multiple independent tasks to under-
stand if the AGRNs adopt modulatory and task independence
within the networks.

We have shown how AGRNs internally organise their nodes
in this situation, and found that networks evolve with a variety
of structures for which there is no specific rule. However,

Fig. 10. Layout of network with one of the highest rates of interference, each
coloured rectangle represents a node belonging to a specific task. Pink nodes
belong to no task.

50 60 70 80 90 100

400

600

800

1,000

Average % of non-interfering nodes

Pe
rf

or
m

an
ce

Fig. 11. Scatter plot of the affects of interference on performance.

one key result from this work is that it is clear that AGRNs
organise their structure during optimisation according in part
to the nature of the tasks they are solving, with the mountain
car task generally having a significantly lower percentage of
interacting nodes than other tasks.

In general, some networks evolved with clear separation
between nodes working towards different tasks; however, in
most cases there is at least some interference, where nodes
working towards completely independent tasks interact with
each other.It is likely that crossover would be more common
when solving complex tasks, as the sub-tasks may share inputs
(observation nodes) and even functionality. We also found
that interference is not indicative of performance, most likely
due to the robustness of networks, meaning that there is not
necessarily an incentive for networks to organise themselves
into clear sub-networks.

It is clear from this work that due to the nature of AGRNs, it
is unlikely for networks to organise themselves into completely
independent modules. Further research will have to be con-
ducted in order to analyse the networks in this circumstance,

and determine whether it is feasible to recognise sub-networks
despite interference from potentially unrelated nodes.

REFERENCES

[1] H. Kitano, “Biological robustness”, Nature Reviews Genetics, vol. 5,
pp. 826–837, November 2011.

[2] Herman F Fumia and Marcelo L Martins. Boolean network model
for cancer pathways: predicting carcinogenesis and targeted therapy
outcomes. PloS one, 8(7):e69008, 2013.

[3] Stuart Kauffman, Carsten Peterson, Björn Samuelsson, and Carl Troein.
Random boolean network models and the yeast transcriptional network.
Proceedings of the National Academy of Sciences, 100(25):14796–
14799, 2003.

[4] Rui-Sheng Wang, Assieh Saadatpour, and Reka Albert. Boolean model-
ing in systems biology: an overview of methodology and applications.
Physical biology, 9(5):055001, 2012.

[5] David Snyder, Alireza Goudarzi, and Christof Teuscher. Finding optimal
random boolean networks for reservoir computing. Artificial Life,
13:259–266, 2012.

[6] Rui-Sheng Wang, Assieh Saadatpour, and Reka Albert. Boolean model-
ing in systems biology: an overview of methodology and applications.
Physical biology, 9(5):055001, 2012.

[7] Jeffrey G Lawrence. Shared strategies in gene organization among
prokaryotes and eukaryotes. Cell, 110(4):407–413, 2002.

[8] Anne E Osbourn and Ben Field. Operons. Cellular and Molecular Life
Sciences, 66(23):3755–3775, 2009.

[9] David Snyder, Alireza Goudarzi, and Christof Teuscher. Finding optimal
random boolean networks for reservoir computing. Artificial Life,
13:259–266, 2012.

[10] Rui-Sheng Wang, Assieh Saadatpour, and Reka Albert. Boolean model-
ing in systems biology: an overview of methodology and applications.
Physical biology, 9(5):055001, 2012.

[11] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schul-
man, J., Tang, J. and Zaremba, W., OpenAI gym. arXiv preprint
arXiv:1606.01540, 2016.

[12] E Zotenko, J Mestre, DP O’Leary, and TM Przytycka. ’Why do hubs in
the yeast protein interaction network tend to be essential: Reexamining
the connection between the network topology and essentiality’. PLoS
Comput Biol, 4(8):e1000140 2008.

[13] M. A. Lones, “Controlling complex dynamics with artificial biochemical
networks’, in Genetic Programming, Istanbul, Turkey, pp. 159–170,
2010.

[14] A. P. Turner et al., “Using artificial epigenetic regulatory networks to
control complex tasks within chaotic systems”, in Information Process-
ing in Cells and Tissues, Cambridge, UK, pp. 1–11, 2012.

[15] T. Quick, C. L. Nehaniv, K. Dautenhahn, and G. Roberts, “Evolving
embodied genetic regulatory network-driven control systems”, in Euro-
pean Conference on Artificial Life, Dortmund, Germany, pp. 266–277,
2003.

[16] Aderem, A., ’Systems biology: its practice and challenge’s. Cell, 121(4),
pp.511-513 2005

[17] Csete, M.E. and Doyle, J.C., Reverse engineering of biological com-
plexity’, science, 295(5560), pp.1664-1669, 2002

[18] Pigliucci, M., ’Is evolvability evolvable?’. Nature Reviews Genetics,
9(1), p.75, 2008

[19] T. Taylor, “A genetic regulatory network-inspired real-time controller for
a group of underwater robots”, in Conference on Intelligent Autonomous
Systems, Amsterdam, Netherlands, pp. 403–412, 2004.

[20] A. P. Turner et al., “Using epigenetic networks for the analysis of
movement associated with levodopa therapy for Parkinson’s disease”,
Biosystems, vol. 146, pp. 35–42, 2016.

[21] S. Das, P. Koduru, X. Cai, S. Welch, and V. Sarangan, “The gene regu-
latory network: an application to optimal coverage in sensor networks”,
in GECCO, Atlanta, GA, USA, pp. 1461–1468, 2008.

[22] H. A. Simon, “The architecture of complexity”, Proceedings of the
American Philosophical Society, vol. 106, pp. 467–482, 1962.

[23] H. Lipson, “Principles of modularity, regularity, and hierarchy for
scalable systems”, Journal of Biological Physics and Chemistry, vol.
7, pp. 125–128, 2007.

[24] B. L. Wanner, “Gene regulation by phosphate in enteric bacteria”,
Journal of Cellular Biochemistry, vol. 51, pp. 47–54, 1993.

[25] J. François, D. Perrin, C. Sánchez, and J. Monod, “The operon: a group
of genes whose expression is co-ordinated by an operator”, Compte
Rendu de l’Academie des Sciences, vol. 250, pp. 1727–1729, 1960.

[26] M. Ptashne and A. Gann, “Genes and Signals”. Cold Spring Harbor,
New York: Cold Spring Harbor Laboratory Press, 200, p. 2.

[27] F. Jacob and J. Monod, “Genetic regulatory mechanisms in the synthesis
of proteins”, Journal of Molecular Biology, vol. 3, pp. 318–356, 1961.

[28] L.A. Moran, H.R. Horton, K.G. Scrimgeour, and M.D. Perry, Principles
of Biochemistry, 5th ed. USA: Pearson, 2011, pp. 650–653.

[29] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets”, Journal of Theoretical Biology, vol. 22, pp. 437–
467, 1969.

[30] Pigliucci, M., Murren, C.J. and Schlichting, C.D., Phenotypic plasticity
and evolution by genetic assimilation. Journal of Experimental Biology,
209(12), pp.2362-2367. 2006

[31] Hansen, T.F., ÁLvarez-Castro, J.M., Carter, A.J., Hermisson, J. and Wag-
ner, G.P., Evolution of genetic architecture under directional selection.
Evolution, 60(8), pp.1523-1536. 2006

[32] Schlosser, G. and Wagner, G.P. eds., 2004. Modularity in development
and evolution. University of Chicago Press.

[33] Clune, J., Mouret, J.B. and Lipson, H.,The evolutionary origins of
modularity. Proc. R. Soc. B, 280(1755), p.20122863. 2013.

[34] Mou, Shaoshuai, and Domitilla Del Vecchio. ”Transcription factor loads
tend to decrease the robustness of stable gene transcription networks.”
bioRxiv (2016):

[35] Zhao, Boxuan Simen, Ian A. Roundtree, and Chuan He. ”Post-
transcriptional gene regulation by mRNA modifications.” Nature reviews
Molecular cell biology 18, no. 1 (2017)

[36] Tatusova, Tatiana, Michael DiCuccio, Azat Badretdin, Vyacheslav
Chetvernin, Eric P. Nawrocki, Leonid Zaslavsky, Alexandre Lomsadze,
Kim D. Pruitt, Mark Borodovsky, and James Ostell. ”NCBI prokaryotic
genome annotation pipeline.” Nucleic acids research 44, no. 14 (2016)

[37] Willbanks, Amber, Meghan Leary, Molly Greenshields, Camila Tymin-
ski, Sarah Heerboth, Karolina Lapinska, Kathryn Haskins, and Sibaji
Sarkar. ”The evolution of epigenetics: from prokaryotes to humans and
its biological consequences.” Genetics and epigenetics 8 (2016)

