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Abstract. Deep learning has recently been adopted for the task of natural lan-
guage generation (NLG) and shown remarkable results. However, learning can
go awry when the input dataset is too small or not well balanced with regards to
the examples it contains for various input sequences. This is relevant to naturally
occurring datasets such as many that were not prepared for the task of natural lan-
guage processing but scraped off the web and originally prepared for a different
purpose. As a mitigation to the problem of unbalanced training data, we therefore
propose to decompose a large natural language dataset into several subsets that
“talk about” the same thing. We show that the decomposition helps to focus each
learner’s attention during training. Results from a proof-of-concept study show
73% times faster learning over a flat model and better results.
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1 Introduction

Language data for almost all domains can be scraped off the web with relative ease
and in large quantities. As more data becomes available, research is needed into meth-
ods that facilitate access to this data, including the generation of natural language text
from non-linguistic data input. Many NLG techniques are available to generate high-
quality outputs from annotated datasets [23, 13, 8, 6], aligned corpora [12, 1] or anno-
tated databases [19, 11]. More work is also done recently on generating language from
unaligned input data [5, 16], where it is the learner’s task to work out the mapping
between non-linguistic data points and sequences of words. Nonetheless, most state-of-
the-art techniques in statistical NLG still do not readily transfer to language datasets
that were scraped off the web and are unaligned and thus in some respects “messy”.

The most promising method for such messy tasks is probably deep learning. Recur-
rent neural networks (RNNs) have made important advances in natural language pro-
cessing, including NLG. Results have been particularly impressive for deep learning
models that are trained from large datasets and that contain a well-balanced distribution
of the linguistic target phenomena. For applications in NLG, the sequence-to-sequence
encoder-decoder model by [24, 9] has been shown to successfully learn to map an input
sequence x of symbolic inputs, such as any form of non-linguistic data, to an output



sequence y of words expressing the data in natural language. Again however, this tech-
nique works best when a sufficiently large, and well-balanced, dataset is available. For
many natural language processing tasks, datasets are smaller due to the time and effort
involved in preparing them. In such cases, it can be challenging to learn good feature
representations. This is the problem we focus on in this short paper.

We present an approach that decomposes a large NLG task into a set of subtasks,
each of which can be represented by an individual neural network that focuses on a sub-
set of the training data. The idea is to automatically identify partitions of the training
data that focus on the same semantics. Intuitively, the words and syntactic phrases used
to forecast “rain” might be different from those used to forecast “wind”—even though
overlaps are possible. Our idea is that focusing on a subset of relevant training instances
will help a deep learning agent perform better on infrequent data points that would oth-
erwise “get lost” in the large input dataset in a flat learning setup. Experiments in the
weather forecast domain show that our approach substantially increases performance on
outputs that occur infrequently in the dataset. We find that the divide-and-conquer ap-
proach is also much faster to train and achieves higher than state-of-the-art performance
in a comparison with previous work.

2 Background

The sequence-to-sequence model that underlies much work on deep learning for NLG
was first presented by [20] and [4], who use an RNN Encoder-Decoder model to learn
a mapping from an input sequence to an output sequence for machine translation. By
training both models jointly, a mapping from the source to the target language is learnt.
This model was first applied to NLG by [24], who use an LSTM to do sentence plan-
ning and surface realisation in an application to information-seeking dialogue, and show
that their model outperforms other approaches to the same domain. [9] apply a similar
model to generate output sequences alongside dependency trees, and show that addi-
tional benefits can be gained from the use of an attention mechanism during training.

The idea of learning a direct mapping from inputs to outputs without intermediate
annotation is related to work on NLG from unaligned datasets. Two popular approaches
to do this are the use of parallel corpora or annotated databases. [1] define the generation
process as a sequence of hierarchically-organised local decisions, and [11] generate
language from weighted hypergraphs.

A practical limitation of deep learning algorithms is that they rely on large datasets
to learn good representations. This can be problematic in domains like NLG or other
NLP tasks that rely on a paired set of inputs and outputs—which are not available in
large quantities. Previous work on hierarchical reinforcement learning for NLG has
shown that when using a divide-and-conquer approach to decompose a complex task
into a hierarchical set of subtasks, it becomes feasible to solve the problem in a scalable
way without significant loss in performance [7]. Similar results have been observed for
the hierarchical decomposition of neural language models [15].



Algorithm 1 Finding a hierarchy.
1: function FINDSUBTASKS(forecast texts f , alignments a, weather events e) return subtasks

2: subtasks = list []
3: for each sentence s in f do
4: Get alignments as with weather events es
5: event combination = the types of all weather events expressed in s as identified from

alignments a
6: if event combination is not in subtasks then
7: add event combination to subtasks as an object with input and output examples
8: end if
9: end for

10: for each element in subtasks do
11: Create a separate subtask (neural net).
12: end for
13: end function

3 Deep learning model

A neural network, such as a multi-layer perceptron, learns a hidden representation h
of an input sequence x = (x1, . . . , xN ) by learning an increasingly abstract encoding
of the inputs, and a mapping from h to either a single output (for classification tasks)
or an output sequence y = (y1, . . . , yM ) (in a sequence-to-sequence learning task).
The hidden representation h can be computed as h = f(x), where f is an activation
function, such as sigmoid, tangent or relu. During training, the goal is to minimise the
loss L between the input and output, e.g. using cross entropy.

In a recurrent neural net, we follow the same procedure, except that h is learnt as
an increasingly abstract representation through recursive updates at each time step t:
ht = f(ht−1, xt). As conventional RNNs are associated with the problem of vanishing
or exploding gradients [3], we use an LSTM and follow the definition of [10].

4 Data and Learning Task

As we aim mainly for a proof-of-concept study in this paper, we will focus our exper-
iments on a single domain: weather forecast generation. We use the WEATHERGOV
dataset from [12], which contains 29,528 weather scenarios. It contains 12 different
weather events, such as temperature, skyCover, etc. We use this existing dataset for
ease of availability and also to allow for a comparison of our model’s performance
with previous work on the same dataset. Given that the dataset was originally collected
from the web1, we argue that our technique will be transferable to other such collected
datasets. Future work will endeavour to demonstrate this.

Each of the weather events can be seen as a collection of lexical-syntactic construc-
tions that describe the same semantic concepts. In other words, we can identify a subset
of words and syntactic phrases that are reused in the datasets to describe a certain group

1 http://www.weather.gov/
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Fig. 1. Illustration of the NLG task as a pipeline [18]: content selection decides which weather
events to include in the forecast; microplanning produces an ordered list of these events, and
surface realisation produces a string of words. Example representations are shown for each stage.

of weather events. However, not all weather events map neatly onto a single sentence.
Instead, we find cases of sentences that express more than one weather record and we
find weather records that get described across multiple sentences.

4.1 Hierarchical decomposition

Algorithm 1 shows the heuristics we used to identify a hierarchy of weather events from
[12]’s WEATHERGOV dataset, which provides alignments between weather events and
sentences. From these alignments, it is possible find out exactly which weather events
are expressed in which sentence. To find a hierarchy, we loop over each sentence in the
human forecasts, find the weather events that it expresses and create one generation sub-
task for each unique combination of aggregated weather events. This led to 22 subtasks
overall, which can be seen as subtasks of a single large task “weather forecast”.

Subtask generators can be seen as sentence generators that are associated with their
own portion of the dataset including input examples (weather events) and output ex-
amples (word sequences). To generate a forecast, we obtain individual sentences from
their respective generators and then concatenate them into a single text.

4.2 Natural language generation tasks

Figure 1 shows our NLG pipeline with the representations used at each stage. The out-
puts of each generation stage are fed as inputs to the next stage. This is important in
order not to generate fragmented and isolated sequences of words but a coherent out-
put text. The first stage content selection decides for each weather record whether it
should be included in the final forecast or not. We learn a binary classification value:
1 if the record is used in the forecast and 0 if it is not used. An LSTM with 2 layers
and 20 hidden units does not find this task very challenging and achieves an accuracy
of 98% for WEATHERGOV after 100 training epochs. All events chosen for inclusion



System BLEU-4 CORRECTNESS FLUENCY
HUMAN 1.0 4.01 4.37
OURSYSTEM 0.67 3.91 3.96∗

FLAT BASELINE 0.23 - -
ANGELI ET AL. (2010) 0.52 4.22 4.12
KONSTAS ET AL. (2012) 0.34 4.03 3.92
MEI ET AL. (2016) 0.70 - -

Table 1. Overview of objective and subjective results.∗ indicates statistically different from HU-
MAN using a 2-tailed Wilcoxon signed-rank test.

at the content selection stage are passed on to the microplanning module in the second
stage. The aim of this stage is to rank and order the weather events that were selected
for inclusion. Part of this problem is also to decide whether to present weather events
individually in a single sentence or to aggregate several events into the same sentence.
We treated the microplanning task as a sequence-to-sequence learning task, e.g. [.id:0,
.id:2, .id:3, .id:5] is mapped to [.id:5 .id:0 .id:3 .id:2] in Figure 1, representing a new
order of events and the fact that .id:3 and .id:2 should be aggregated into one sentence.
We train an LSTM with 4 layers and 20 hidden units for 2000 epochs, and obtained
an accuracy of 87% for WEATHERGOV. The surface realisation stage finally is also
implemented as an LSTM with 4 layers and 50 hidden units. The input sequence cor-
responds to an ordered set of non-linguistic measurements x = (x1, . . . , xN ), and the
output sequence is a sequence of words y = (y1, . . . , yM ). All models are trained with
32 batches over 2,000 epochs. To facilitate training, we use a BOS and an EOS symbol
to denote the beginning and end of a sequence. All results use the same data split as
previous work [1, 11]: 25,000 for training, 1,000 for validation and 3,528 for testing.

5 Experiments and Evaluation

Our experiments evaluate the final outputs generated by the generator illustrated in
Figure 1. A future evaluation could investigate the errors made at individual generation
stages and quantify their contribution to the overall objective and subjective assessment;
see Table 1. In this paper, we focus on evaluating the overall output quality.

5.1 Objective Evaluation

Table 1 (left) shows results in terms of the BLEU modified precision score [17] mea-
suring similarity with human examples. We compare against a human upper-bound and
previous work on the same domain by [1], [11] and [14]. Our system reaches higher
BLEU scores than the former two studies, 22% and 49%, respectively, but a slightly
lower score than [14], 4.3%. Table 2 shows an example of one of our generated fore-
casts and a human equivalent. We chose to present a non-perfect example, as the type of
error shown is representative for our system’s outputs. The LSTM policy learns the cor-
rect word sequences and mappings from semantic inputs, but occasionally duplicates



Generated output
HUMAN A 30 percent chance of showers and thunderstorms after noon. Mostly cloudy, with

a high near 69. South wind between 10 and 20 mph, with gusts as high as 30 mph.
WEATHERGOV A 30 percent chance of showers and thunderstorms after noon. Mostly cloudy,

Mostly cloudy, with a high near 69. With a south wind 10 to 20 mph, with gusts
as high as 30 mph.

Table 2. Generated example outputs.

phrases. We were able to train our hierarchical model in 45 hours on a GPU (Tesla
K40)—73% faster than we observed for a flat setup.

We also present results from a flat baseline model that learns from the whole training
set without hierarchical decomposition. This model skips the steps shown in Figure 1
and maps (the redundant set of) weather records directly to words. As can be seen in
Table 1, the results are not strong. We believe that this is due to some examples being too
rare in the training data in the flat case for the LSTM to learn good representations for
them. For example, while temperature occurs in over 90% of weather forecasts across
both datasets, snow occurs in only 1%, thus “getting lost” in the training data in the flat
setup. Given the low BLEU score (and manual inspection) we decided not to evaluate
the flat model with human raters.

5.2 Subjective Evaluation

Table 1 (right) shows results from a human rating study. To allow for a comparison
with previous work, we asked human raters the same questions as [1] and [11]: “Does
the meaning conveyed by the text correspond to the database input?” to determine se-
mantic correctness and “Is the text grammatical and overall understandable?” to de-
termine English fluency. Semantic correctness is evaluated on a 1-5 scale with values
mapping to “perfect”, “near perfect”, “minor errors”, “major errors” and “completely
wrong”. English fluency also uses 5 values “flawless”, “good”, “non-native”, “disflu-
ent” and “gibberish”. 43 human raters were recruited from Amazon Mechanical Turk
(www.mturk.com) to rate altogether 800 weather forecasts (400 system-generated,
400 human) on a scale of 1-5. The human-authored forecasts were rated better than our
system-generated ones for both categories. The difference is statistically significant at
p<0.01 for fluency, according to a 2-tailed Wilcoxon ranked sum test. OURSYSTEM
forecasts receive scores comparable to earlier work by [11]. [14] do not report a sub-
jective evaluation, which is unfortunate for our comparison given the low correlation
between BLEU scores and human quality assessment [2].

The difference for semantic correctness is not significant between OURSYSTEM
and HUMAN. We believe that rounding of measurements played a role in the correct-
ness ratings. The human forecasts might round a windSpeed of “max:78” to “up to 80
mph”. This is frequent in the data and our system learnt to do this too. Some raters pe-
nalised this phenomenon more severely than others, but it occurred in both our human
and system-generated data. We are surprised to see that Angeli’s and Konstas’ systems
achieve better results than our human examples in the correctness case.



6 Conclusion and Future Work

We have presented a proof-of-concept study on using hierarchical decomposition for
large NLG tasks into subsets of smaller tasks within a deep learning framework. The
divide-and-conquer approach to learning can (a) lead to much faster learning (up to
73%), and (b) allow us to learn good generation policies for a dataset that is not ideally
balanced with some examples occurring much more frequently than others. We believe
that this work is relevant to language datasets that are scraped off the web. While lan-
guage data is available in abundance on the web, directly scraped data is often less
clean and structured as required for many state-of-the-art techniques in NLP, includ-
ing deep learning. We observed that the latter can particularly struggle to learn good
representations for infrequent data points in large training sets.

Future work needs to find ways to decompose datasets of examples automatically in
a more principled way than based on heuristics, e.g. using genetic algorithms [21, 22].
Also, we have applied our technique to a vanilla LSTM model only and could explore
more sophisticated deep learning models including e.g. such with attention mechanism.
Also, we plan to test our approach on additional language datasets scraped off the web.
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13. Mairesse, F., Jurčı́ček, F., Keizer, S., Thomson, B., Yu, K., Young, S.: Phrase-Based Statisti-
cal Language Generation Using Graphical Models and Active Learning. In: Proc. of the 48th
Annual Meeting of the Association of Computational Linguistics (ACL). Uppsala, Sweden
(2010)

14. Mei, H., Bansal, M., Walker, M.: What to talk about and how? Selective Generation using
LSTMs with Coarse-to-Fine Alignment. In: Proc. of the North American Chapter of the
Association for Computational Linguistics (NAACL). San Diego, CA, USA (2016)

15. Morin, F., Bengio, Y.: Hierarchical probabilistic neural network language model. In: Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
pp. 246–252 (2005)

16. Novikova, J., Rieser, V.: The aNALoGuE Challenge: Non Aligned Language GEneration.
In: Proceedings of the 9th International Natural Language Generation Conference (INLG)
(2016)

17. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: A Method for Automatic Evaluation
of Machine Translation. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics (ACL). pp. 311–318. Association for Computational Linguistics
(2001)

18. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University
Press, New York, NY, USA (2000)

19. Snyder, B., Barzilay, R.: Database-Text Alignment via Structured Multilabel Classication. In:
Proc. of 20th International Joint Conference on Artificial Intelligence (IJCAI). Hyderabad,
India (2007)

20. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems (NIPS) 27. pp. 3104–3112 (2014)

21. Turner, A.P., Caves, L.S., Stepney, S., Tyrrell, A.M., Lones, M.A.: Artificial epigenetic
networks: Automatic decomposition of dynamical control tasks using topological self-
modification. IEEE Transactions on Neural Networks and Learning Systems (2016)

22. Turner, A.P., Lones, M.A., Fuente, L.A., Stepney, S., Caves, L.S., Tyrrell, A.M.: The artificial
epigenetic network. In: Evolvable Systems (ICES), 2013 IEEE International Conference on.
pp. 66–72. IEEE (2013)

23. Walker, M., Stent, A., Mairesse, F., Prasad, R.: Individual and Domain Adaptation in Sen-
tence Planning for Dialogue. Journal of Artificial Intelligence Research 30(1), 413–456
(2007)
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