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Abstract. This paper proposes an approach for learning to coor-
dinate verbal and non-verbal behaviours in interactive robots. It is
based on a hierarchy of multiagent reinforcement learners executing
verbal and non-verbal actions in parallel. Our approach is evaluated
in a conversational humanoid robot that learns to play Quiz games.
First experimental results show evidence that the proposed multia-
gent approach can outperform hand-coded coordinated behaviours.

1 Introduction
Multiagent Reinforcement Learning is used to build autonomous
agents that learn their behaviour from a shared environment [3].
In the case of cooperative Reinforcement Learning (RL) agents,
they use the same reward function in order to optimize a joint goal
[2, 12, 13, 10]. Recent research on interactive systems using ma-
chine learning has experienced important progress in the optimiza-
tion of their conversational behaviours (e.g. confirmation, clarifica-
tion and/or negotiation dialogues), where the RL framework has been
an attractive alternative to hand-coded behaviours for the design of
optimized dialogue agents. However, although important progress
has been made for speech-based interactive systems, less progress
has been made on optimizing both verbal and non-verbal behaviours
in a unified way. Instead, both types of behaviours are often modelled
independently [1, 15, 14, 8], without the aim to jointly achieve a goal
as is the case in human interaction, where verbal and non-verbal be-
haviours are tightly coupled [16].

In this paper, we propose an approach based on hierarchical multi-
agent RL for optimizing the coordination of verbal and non-verbal
behaviours. In this approach, one agent optimizes verbal behaviour,
while another (simultaneously) optimizes non-verbal behaviour so as
to align with the non-verbal actions of a human user. As a result, the
joint action-selection of the RL agents represents the optimized coor-
dination of both behaviours. We present preliminary results suggest-
ing that this form of joint optimization is a promising and principled
alternative to non-joint approaches and can equip robots with a more
natural way of coordinating and adapting their multimodal actions.

2 Proposed Learning Approach
To achieve scalable dialogue optimization, we cast interaction con-
trol as a discrete-time Multiagent Semi-Markov Decision Process
(MSMDP) M = <S, �A, T,R, L, F> that is characterized by the
following elements: (a) a finite set of states S; (b) a finite set of joint
actions �A = (Av

, A
nv) executed in parallel, where A

v are verbal
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actions and A
nv are non-verbal actions; (c) a stochastic state tran-

sition function T (s�, τ |s,�a) that specifies the next state s
� given the

current state s and joint action �a = (av
, a

nv), where τ denotes the
number of time-steps taken to execute joint action �a in state s; (d)
a reward function R(s�, τ |s,�a) that specifies the reward given to the
agent for choosing joint action�a when the environment makes a tran-
sition from state s to state s

�; (e) a language L that is represented as
a context-free grammar (CFG) to represent relational tree-based rep-
resentations as described in [4]; and (f) a stochastic model transition
function F = P (m�|m, s) that specifies the next model or subtask
m

� given model m and state s. This last element allows the user to
navigate more flexibly across the available sub-dialogues [5].

We distinguish two types of actions: (i) single-step joint actions3

corresponding to verbal actions such as ‘greeting’ or ‘ask question’
and non-verbal actions such as ‘head nodding’ or ‘lift right arm’,
and (ii) multi-step joint actions corresponding to sub-dialogues or
conjunctions of single-step joint verbal and non-verbal actions. In
addition, we treat each multi-step joint action as a separate MSMDP.

We decompose an MSMDP into multiple MSMDPs that are hi-
erarchically organised into X levels and Y models per level. The
indices (i, j) only identify a unique subtask (i.e. MSMDP) in the
hierarchy, they do not specify the execution sequence of subtasks
which is learnt by the RL agent, where j ∈ {0, ..., X − 1} and
i ∈ {0, ..., Y −1}. Thus, a given MSMDP in the hierarchy is denoted
as M

(i,j) = <S
(i,j)

, �A
(i,j)

, T
(i,j)

, R
(i,j)

, L
(i,j)

, F
(i,j)

>. Notice
that each MSMDP is a multi-decision maker for verbal and non-
verbal actions, hence the term ‘multiagent’. The solution to a Mul-
tiagent Semi-Markov Decision Process is an optimal policy π

∗(i,j),
which is a mapping from environment states s ∈ S to single- or
multi-step joint actions �a ∈ �A. The goal of an MSMDP is to find a
function denoted as π∗(i,j)(s) that maximizes the cumulative reward
of each visited state. The optimal policy for each learning agent in the
hierarchy is defined by π

∗(i,j)(s) = argmax�a∈ �A(i,j) Q
∗(i,j)(s,�a),

where the optimal action-value function Q
∗(i,j)(s,�a) specifies this

cumulative reward for executing joint action �a in state s and then
following policy π

∗(i,j). We apply the HSMQ-Learning algorithm
[9, 6] to cooperatively induce such a hierarchy of multiagent policies
based on long-term cumulative rewards across policies.

3 Experimental Setting
To test our approach for generating coordinated joint actions and
compare it with non-coordinated baselines, we use a robot dialogue

3 We assume that the execution of single-step joint actions terminates at the
same time, which involves a non-verbal action to wait for the verbal one to
terminate, or vice versa. Other ways of termination, where agents behave
more autonomously but still in a coordinated way, are left as future work.
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Figure 1. Hierarchy of joint agents for our robot in the Quiz domain.
Whilst straight lines denote strict hierarchical control, dashed lines denote

less strict control for more flexible interaction across sub-dialogues [5].

system playing Quiz games. In this domain, the robot can ask the user
questions, or vice-versa, the user can ask the robot questions. Both
user and robot communicate with verbal and non-verbal actions and
our aim is to coordinate the robot’s non-verbal actions with its ver-
bal actions and simultaneously align them with the user’s non-verbal
actions to show individualised adaptation. Our system has been im-
plemented using the Nao humanoid robot (see dialogue in Table 2).

We use the hierarchy of dialogue agents shown in Figure 1. Ta-
ble 1 shows the set of state variables for our system, each one mod-
elled as a discrete probability distribution with predefined parame-
ters. Dialogue and game features are included to inform the agent of
situations in the interaction. The set of verbal actions (80 in total)
consists of meaningful combinations of speech act types and associ-
ated parameters.4 The set of non-verbal actions (20 in total) consists
of predefined body movements.5 We constrained the actions per state
based on the CFGs L(i,j), so that only a subset of joint actions was
allowed per dialogue state (constraints omitted due to space). This
reduces the state-action space from 1012, using a propositional rep-
resentation enumerating all variables and values, to only 104.

The global reward function aims for interactions that encourage
to play, get as many correct answers as possible, and imitate the
user’s non-verbal actions. It is defined by the following rewards for
choosing action a in state s: +10 for answering a question correctly
or reaching a terminal state (in which the user will be prompted to
play again), −10 for remaining in the same state (i.e. st+1 = st or
st+1 = st−1), +1 for imitating a non-verbal action, and 0 otherwise.
The multimodal user simulation used a set of user dialogue acts as
responses to the system dialogue acts (Footnotes 4-5). They used pre-
defined probability distributions for modelling verbal and non-verbal
interactions: P (av,usr|av,sys) and P (anv,usr|anv,sys), with errors
based on an equally distributed speech and gesture recognition error
rate of 20%. The recognition confidence scores were generated from
beta probability distributions with parameters (α = 2, β = 6) for
bad recognition and (α = 6, β = 2) for good recognition [4].

4 Verbal Single-Step Actions: Speech Act Types={Salutation, Request,
Apology, Confirm, Accept, SwitchRole, Acknowledgement, Provide, Stop,
Feedback. Express, Classify, Retrieve, Provide.}× Parameters={Greeting,
Closing, Name, PlayGame, Asker, KeepPlaying, GameFun, StopPlaying,
Play, NoPlay, Fun, NoFun, GameInstructions, StartGame, Question, An-
swers, CorrectAnswer, IncorrectAnswer, GamePerformance, Answer, Suc-
cess, Failure, GlobalGameScore, ContinuePlaying}

5 Non-Verbal Single-Step Actions={Hello, Bye, HandShake, NodYes,
NodNo, Success, Failure, OpenRightArm, OpenLeftArm, SitDown,
StandUp, SeatedWithExtendedLegs, SeatedWithCrossedLegs, Thinking,
ScratchingHead, StandingWithCrossedArms, StandingWithArmsBack,
StandingWithArmsHeadBack, Wait, None.}

State Variable Values
Salutation none, greeting, withName, regreeting, closing
UserName unknown, filled, known
ConfScore null, 0.1, 0.2, 0.3, 0.4, 0.5, ... , 0.9, 1.0
Confirmed null, no, yes
PlayGame unknown, no, yes, ready
Instructions unprovided, provided
Asker unknown, robot, user
QuizGame unplayed, playing, semiplayed, played,

interrupted, keepPlaying, stopPlaying
GameFun unknown, no, yes
GameOver no, yes
GameInstructions unprovided, provided
QuestionState null, unknown, unasked, askedWithAnswers,

askedWithoutAnswers, reaskedWithAnswers,
reaskedWithoutAnswers, confirmed

AnswerState unanswered, unclassified, correct, incorrect, unknown
MaxQuestions no, yes
GameScore unknown, good, bad
GlobalGameScore null, unprovided, provided
ExpressedScore no, yes

Table 1. State variables for the Quiz dialogue system, where combinations
of variable-value pairs define situations (states) in the interaction used by the

reinforcement learning dialogue agents for joint action-selection.

Hi, my name is NAO, what is your name?
I am Charles

Nice to meet you Charles.
Do you want to Play a Quiz game?
Sure

One of us asks questions and offers possible answers.
The other answers by selecting one of those answers.
Do you want to ask me questions or shall I ask you?
You ask me
The first question is. What is a typical magic instrument?
Your choices are: One, guitar. Two, drums.
Three, violin. Four, flute. What is your choice?
Violin

That is not quite right. Do you have another choice?
Maybe flute

Good, that is correct.
Now I want to ask you

Let’s do it like that. What is the first question?
What does water become at the temperature of zero degrees?
Your choices are: One, condensation. Two, ice. Three, steam.

I choose ice.
That is correct.

Okay, ask me another question.
I want to stop playing.

Did you like playing the Quiz Game?
I did

I am glad to hear that.

It was nice playing with you, see you soon. Bye!

Table 2. Illustrative multimodal dialogue exhibiting non-verbal actions
(left) and verbal actions (right). User responses shown in italics. The robot’s
images were generated with the Choregraphe tool from aldebaran.com
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Figure 2. Average reward (10 runs) of joint action learners. Settings:
α = 100/(100 + τ), γ of .99, �-Greedy, � = .01, initial Q-values= 0.01.

4 Experimental Results
We trained our agents, and compared their performance in terms of
dialogue reward against two baselines; see Figure 2. One baseline
uses learnt verbal actions without non-verbal actions (solid blue
line), and the other baseline uses learnt verbal actions with hand-
coded non-verbal actions (dashed green line). The latter baseline in-
cluded intuitive joint actions such as <Salutation(Greeting),Hello>
or <Feedback(CorrectAnswer),NodYes>. Results from the last 1000
episodes show that our multiagent approach (red crossed line) outper-
forms its counterparts (blue and green lines) by 27% and 8% in terms
of average reward, respectively. We can draw the following prelim-
inary conclusions. While the low performance of the verbal-only
baseline most likely results from its lack of non-verbal expressive-
ness (and therefore lack of positive rewards for imitating the user),
the difference between the jointly learnt and hand-coded policies is
most likely related to adaptiveness. While the hand-coded policy re-
lies on intuitive combinations of verbal and non-verbal actions, users
differ with respect to their individually preferred combinations. Co-
ordinating verbal and non-verbal actions jointly based on imitation
of the user’s gestures, therefore leads to a higher degree of individu-
alised adaptation and higher rewards.

As a consequence of these results, we will investigate two hy-
potheses in future research: (1) a humanoid robot that only speaks
but does not move has a lower perceived performance than a robot
that combines verbal with non-verbal actions; and (2) a humanoid
robot that does not learn to coordinate its verbal with non-verbal ac-
tions in an adaptive fashion is perceived as having a lower perfor-
mance than a robot that learns to coordinate both types of actions.
An advantage of learning to coordinate verbal with non-verbal ac-
tions is that the robot can exhibit different behaviours for different
users. Future work may also investigate how coordinated verbal and
non-verbal behaviour may affect task success or user satisfaction.

5 Conclusion and Future Work
We have described an approach for optimizing the behaviour of robot
dialogue systems by applying and extending a hierarchical RL frame-
work to support multiagent decision making of verbal and non-verbal
actions in a coordinated and adaptive way. To evaluate, we have in-
corporated our methods into a robot dialogue system that learns to
play Quiz games. Although preliminary, experimental results make
our approach look promising by combining the benefits of (a) pre-
defined state-action spaces, (b) scalable policy learning, (c) joint and
coordinated action section, and (d) opportunities for online learning.

We argue that those features, with a special focus on online learning,
represent an interesting direction to train robots’ behaviour, so that
they can learn how to coordinate their actions in an adaptive fashion
while interacting with users. The next step towards this is to train our
simulations and MSMDPs (online) from real human-robot interac-
tions to validate our results. We would like to optimize turn-taking
for more natural and efficient interactions. Another step is a compar-
ison with other hierarchical learning algorithms [11] using function
approximation. We also would like to extend our joint learning agents
with adaptive verbalizations [7], where each MSMDP in our hierar-
chy of agents would have three agents, one for dialogue management,
one for language generation, and one for non-verbal behaviour.

6 Acknowledgments
This research was funded by the European FP7 programmes under
grant agreements ICT-248116 (ALIZ-E) and 287615 (PARLANCE).

REFERENCES
[1] Dan Bohus and Eric Horvitz, ‘Facilitating Multiparty Dialog with Gaze,

Gesture, and Speech’, in ICMI-MLMI, p. 5, (2010).
[2] Craig Boutilier, ‘Sequential Optimality and Coordination in Multiagent

Systems’, in International Joint Conference on Artificial Intelligence
(IJCAI), pp. 478–485, (1999).

[3] L. Busoniu, R. Babuska, and B. De Schutter, ‘A Comprehensive Sur-
vey of Multiagent Reinforcement Learning’, IEEE Transactions on Sys-
tems, Man, and Cybernetics.
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