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ABSTRACT

Research on interactive systems and robots, i.e. interactive
machines that perceive, act and communicate, has applied a
multitude of different machine learning frameworks in recent
years, many of which are based on a form of reinforcement
learning (RL). In this paper, we will provide a brief intro-
duction to the application of machine learning techniques
in interactive learning systems. We identify several dimen-
sions along which interactive learning systems can be ana-
lyzed. We argue that while many applications of interactive
machines seem different at first sight, sufficient commonal-
ities exist in terms of the challenges faced. By identifying
these commonalities between (learning) approaches, and by
taking interdisciplinary approaches towards the challenges,
we anticipate more effective design and development of so-
phisticated machines that perceive, act and communicate in
complex, dynamic and uncertain environments.
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General Terms
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Figure 1: An interactive system, interacting with
other robots (a), the world (b), or with humans (c).

1. MOTIVATION

Intelligent systems or robots often learn through contin-
uous interaction with their environment. We define an in-
teractive machine here as any entity which learns through
interacting with its (real or virtual) physical world, humans
and/or other machines. This principle is illustrated in Fig-
ure 1, which shows the different ways of interaction that a
machine can use for learning. It depicts an interactive sys-
tem (e.g. a robot) that can interact with one or more other
robots, with the world, and with humans. Interaction in
such scenarios is seen as a two-way causal relationship in
which an agent can observe the other end in the interaction,
and in which it can act as part of the interaction. The re-
sulting observation-action loop can be enriched with feedback
that can be given to any interaction partner, at any moment.
Feedback may include explicit signals being given to the in-
teractive system (experienced through its observations) or
may come from intrinsic sources, such as motivation, inten-
tions or goals.



Given the many ways interaction can take place, and given
the many types of feedback one may apply, learning is vital
to optimize interaction patterns. Even though many robotic
systems can be scripted or programmed to behave just as
expected, the rich nature of interaction with the physical
world, or with humans, demands flexible, adaptive solu-
tions to deal with dynamic, previously unknown, or highly
stochastic domains. Learning in interactive systems typi-
cally generalizes standard supervised learning settings (e.g.
classification). We can adapt a general definition of learn-
ing (taken from a classical machine learning textbook [62])
towards: “A machine can therefore be said to learn from in-
teractions in a particular class of tasks, if its performance
improves with the given interactions over time”.

In interactive systems, learning settings generalize to in-
teraction with other humans or robots, to teaching and
learning settings, to complex interaction with the physical
world, and to observations being produced by rich sensors
such as RGB-3D cameras and stereo microphones. Exam-
ples of such rich settings include, but are not limited to:

• a robot that may learn to coordinate its speech with
its actions, taking into account visual feedback during
their execution;

• an autonomous vehicle (a car, a wheelchair, etc.) that
may learn to coordinate its acceleration and steering
behaviour depending on observations of obstacles;

• a team of robots playing soccer that may learn to co-
ordinate their ball kicks depending on the dynamic lo-
cations of their opponents;

• a mobile robot that may interactively learn from hu-
man guidance how to manipulate objects and move
through a building, based on human feedback using
language, gestures and interactive dialogue.

• a multimodal smart phone can adapt its input and
output modalities to the userÕs goals, workload and
surroundings.

While intelligent machines can thus interact with their envi-
ronment in different ways by perceiving, acting and commu-
nicating, they often face a challenge in how to bring these
different concepts together in a systematic and unified way.
Originally, the field of artificial intelligence (AI) was con-
cerned with so-called “complete” systems, in which percep-
tion, action, memory, reasoning mechanisms and much more
were studied as a whole. However, in recent decades, many
specialized fields have appeared in which performance on a
specialized task was valued, for example natural language
processing or object recognition. Such specialized systems
are very good at doing one thing, but have lost the con-
nection to complete AI systems displaying truly general in-
telligence.1 Several pleas, such as the one by Nilsson [67],
have been given to go back to the original goals of AI: build-
ing general intelligent systems in which many specialized
algorithms are integrated. Another, yet related, movement
in AI concerned new, or embodied, AI (see for example the
book by Pfeifer and Scheier [73]). This movement is based
on the idea that for intelligence to develop, a physical body
is needed, and it is equally useful for making some tasks
simpler because the world-body-mind interaction can be ex-
ploited in various ways.

1See also the recent conferences on artificial general intelli-
gence (AGI) http://agi-conference.org/

In this paper we argue in a similar way for more inte-
gration of existing knowledge and expertise, yet now in a
more constrained context of machine learning. Namely, one
of the main reasons for the existing gap in adaptive interac-
tive systems is the fact that the core concepts in perception,
action and communication are typically studied by different
communities: computer vision, robotics, natural language
processing, human-computer interaction communities, and
cognitive science, among others, without much interchange
between them. Across communities, the machine learning
field has provided us with a rich set of computational meth-
ods to improve the individual performance of perception,
action and communication components in interactive sys-
tems and robots. However, learning systems that encompass
multiple of these concepts in a unified and principled way
are still rare. As machine learning lies at the core of several
communities, we argue that it can act as a unifying factor in
bringing the communities closer together. Closer collabora-
tion could be beneficial for practical applications in robotics,
human-robot interaction and intelligent interfaces. Equally
important, it encourages theoretical advances in adaptive
sensorimotor and perception-action loops in general cogni-
tion, and understanding how state-of-the-art approaches in
each of the disciplines can be combined to form generally
interactive intelligent systems.
In the following, we will identify several important aspects

of interactive machines and briefly survey some of the most
important learning paradigms that have been applied. Note
that we do not claim to be exhaustive, and that there are nu-
merous works we cannot mention in this limited space. We
also highlight some common opportunities and challenges
across paradigms and argue for a more unified perspective
on machine learning for interactive systems and robots.

2. DIMENSIONS OF ADAPTIVE,
INTERACTIVE MACHINES

Interactive machines come with different capabilities and
tasks. It is useful to categorize adaptive interactive systems
along a number of dimensions. These include, but are not
limited to:

1. Physical presence: Does the machine have a (real)
physical presence or is it virtual? (an autonomous car
versus a driving simulator, e.g.)

2. Situatedness: Does the machine act in a (virtual or
real) spatial environment which undergoes dynamic
changes and can include other entities?

3. Embodiment: Does the machine have a (virtual or
physical) body which might even resemble human
anatomy (e.g. as a humanoid)?

4. Modalities: Is the machine uni-modal or does it have
multiple input and output channels?

5. Conversational capability: Can the machine engage in
conversations with humans or other machines? (e.g.,
a spoken dialogue system or conversational robot)

6. Affectiveness: Does the machine display a consistent
personality or does it try to adapt its behaviour to the
(changing) state of mind of its user? Basically, can it
read and/or communicate emotional states?

7. Flow of interaction: Is the interaction structured in
any way (e.g. using turn-taking), can either partner in
the interaction take the initiative, and which way can
information and actions flow?



8. Roles: Whenever adaptation is part of the interac-
tion, which roles (teacher, apprentice, student, solo-
exploring mode, etc.) do partners have and how is
feedback used to change the interaction?

9. Task and team structure: What is the role of the inter-
active system in the global system (e.g. equal partners,
master-slave setup, advisor, etc.) and what does the
system need to accomplish? (i.e. what is the global
performance measure?)

The first three dimensions are basically about the role of the
system in a“real”, physical context. Being embodied and em-
bedded in an environment can have a huge influence on the
types of interactions. The next three dimensions are about
communication with the environment, such as the people
within it. The last three dimensions – the flow of interac-
tion, aspects of roles, and task and team structure – are
about what is actually being optimized in the interaction.
Learning in interactive systems, the focus of this paper, es-
sentially optimizes the interaction patterns relative to some
goal, some task, and some other intelligent components in
the system, and a key aspect is how feedback is used in the
global system to actually do that.

Categorizing interactive machines along these dimensions
gives rise to an enormous amount of different interaction pat-
terns, and equally to many different learning settings. For
example, a humanoid robot that moves through a dynamic
environment and solves tasks by interacting with human in-
structors exhibits many capabilities that can be categorized
along these axes. We leave it to future work to fully char-
acterize these systems in a more rigorous ontology. Note
that whereas physical robots are typical examples, equally
fitting examples include for example Apple’s personal assis-
tant SIRI on a mobile phone.

As said, learning is a vital component of any adaptive in-
teractive system or robot. The following section will give an
overview of the most important learning techniques applied
to interactive machines.

3. MACHINE LEARNING FRAMEWORKS
Adaptive interactive systems can optimize their behavior

in various ways. Possibilities range from a robot doing un-
supervised generalization over objects based on camera im-
ages, to multiple robots learning how to coordinate a physi-
cal task (e.g. carrying a table) from observing humans doing
the same thing. Important aspects here are (i) the task to be
optimized, (ii) the type of feedback and how it is given to the
learning system, and (iii) the modalities used in the system
(e.g. dialogues, camera sensors, haptic feedback, etc.).

The typical machine learning task in interactive systems
is that of learning a function from inputs (e.g. state fea-
tures) to outputs (e.g. actions, class labels, preferences,
etc.). Feedback on the current behavior of the system can be
given in terms of evaluative corrections (e.g. “this behavior
is quite good”), correct answers (e.g. “this is the wrong clas-
sification; it should have been...”), or generally in terms of
numerical rewards which can be optimized (e.g. “every time
the robot performs the right answer, it gets +10 reward”).

3.1 Type and Amount of Feedback
From a technical point of view, learning frameworks differ

in the amount and the way they process feedback, and, from a
contextual point of view, where the feedback is coming from.

Starting from this, we can place those learning paradigms
in between the extremes: classical supervised learning and
unsupervised learning (see also [33]). All these variants have
their specific purpose and functional role in interactive sys-
tems. In the following, we will give a short overview. Note
that these descriptions concern typical instances, whereas
practically (and conceptually) many combinations can (and
some have been) be proposed.

3.1.1 Supervised Learning
Generally speaking, supervised learning can be used when-

ever it comes to the task of classifying data. Consider a data
set of the form: D = {(x1, y1), ..., (xN , yN )}, where xi are
n-dimensional vectors of features and yj are class labels. A
supervised learning algorithm induces a function h : X → Y ,
where X is the input space (unlabelled instances) and Y is
the output space (labels). The function h is known as a clas-
sifier when Y is discrete and a regressor when Y is continu-
ous. It is among a space of functions H = {h|h : X → Y },
and x can be labelled as

h(x) = argmax
y

f(x, y), (1)

where f is a scoring function f : X × Y → R. This func-
tion can be induced through a number of different algorithms
such as decision trees, neural networks, Bayes nets, instance-
based methods, linear regression, and support vector ma-
chines (SVMs), among others [9, 55].

3.1.2 Semi-Supervised Learning
The success of supervised learning depends on a usually

very large set of labelled data, which, in many cases, is not
available in sufficient quality or amount. Semi-supervised
learning algorithms address this problem by using a small
amount of labelled data and a large amount of unlabelled
data. The aim is (a) to improve the learning accuracy over
supervised methods and (b) to reduce the expense in data
labelling [116]. Examples of semi-supervised learning meth-
ods are generative models [66], transductive SVMs [47], self-
training [112], and co-training [10].

3.1.3 Reinforcement Learning
While supervised methods provide a direct feedback to

a given input, reinforcement learning (RL) provides a kind
of indirect feedback based on rewards for the result of the
interaction of a system with its environment, and the aim
is to maximize long-term numerical rewards (see [48, 89]).
This can be seen as a very weak form of supervised learn-
ing, where not the situation itself is rated, but the impact
of an action taken towards an overall goal. Thus, reinforce-
ment learning by design complies very well with interactive
systems, as knowledge gain is a result of interaction itself.
The RL framework basically uses the formalism of Markov

Decision Processes (MDPs). An MDP consists of a finite
set of states S = {si}, a finite set of actions A = {aj}, a
probabilistic state transition function T = P (s�|s, a), and a
reward function R(s�|s, a) that rewards the agent for choos-
ing action a in state s (at time t) and transitioning to state
s
�. Solving an MDP means finding a function π : S → A

defined as

π
∗(s) = argmax

a∈A
Q

∗(s, a), (2)

where the Q-function specifies cumulative rewards for each
state-action pair. The policy function π is the basis for



action-selection, and the optimal functionQ∗ can be induced
by reinforcement learning algorithms [89, 93, 110].

While the MDP model offers a formal framework for opti-
mizing the behaviour of interactive systems and robots, its
practical application is affected by several limitations. These
include large search spaces (for complex domains), partial
observability, unknown state transitions and reward func-
tions (all due to uncertainty), slow learning (due to infinite
visits to state-action pairs), and several others. However,
with recent advances in RL, the use of RL for interactive
systems and robots is strongly increasing [110].

There are several other ways RL has been extended
with other forms of machine learning to tackle such limi-
tations. The relationship between supervised and reinforce-
ment learning has addressed scalability and model learn-
ing of MDPs. On the one hand, since tabular policies (i.e.
representing the policy with a lookup table) are hard to
scale up, they have been replaced by function approxima-
tors such as decision and regression trees [75, 28], neural
networks [98, 78], linear-based methods [93], and policy gra-
dient methods [90, 72]. In addition, hierarchical learning
divides a problem into unified sub-problems for accelerating
learning and scaling up to more complex problems [7, 20,
51]. On the other hand, supervised learning has been used
to estimate the state transition function and reward func-
tions while the agent interacts with its environment. This is
known as model-based learning [4, 74], in contrast to model-
free learning which does not require learning a transition
and reward function. Model-based learning plays a crucial
role in systems and robots that learn from interaction [44].

While little attention has been devoted to semi-supervised
RL, one exception combines RL with transductive SVMs in
order to induce MDP-based polices with a reward function
of the form R = wTφ(s) with state features φ and weights
w estimated from observed behaviour [105].

3.1.4 Unsupervised Learning
In contrast to supervised learning approaches, unsuper-

vised learning algorithms make use of unlabelled training
examples D = {x1, ..., xn} and consider the labels unknown
(i.e. they are hidden variables). Thus, the task of an un-
supervised learning algorithm is to find hidden structure in
unlabelled data sets. Unsupervised learning approaches in-
clude clustering, statistical modelling, dimensionality reduc-
tion, and unsupervised neural networks. Clustering is the
task of partitioning the input data into maximally homoge-
neous groups (also called clusters) [108]. Statistical mod-
elling is used to estimate probability distributions such as
P (xt|x1, ..., xt−1), given a new input xt and its previous in-
puts [40]. Dimensionality reduction is the task of finding a
lower dimensional representation of the n-dimensional vec-
tors of features in the input space [34]. Unsupervised neural
networks are used to learn representations of the input in
order to capture salient characteristics at different levels of
granularity, e.g. deep learning algorithms [8].

3.2 The Origin of Experience and Feedback

In addition to the type of feedback (creating a spectrum
ranging from supervised to unsupervised learning), one can
distinguish various sources of feedback. In addition, more
general learning experiences (e.g. observations, learning
samples, etc.) can come from different origins. Here we
briefly review several options.

3.2.1 Transfer Learning / Multi-Task Learning
Transfer and multi-task learning are closely related con-

cepts that aim at learning to learn [100] in a way that they
try to improve the learning performance in a task based on
previous learning efforts. Usually, we have two different data
sets for source and target data, Ds = {(xs

1, y
s
1), ..., (x

s
n, y

s
n)}

and Dt = {(xt
1, y

t
1), ..., (x

t
m, yt

m)}; Ds �= Dt. Source data
may come from multiple data sets. The difference in the
data sets may be in the feature vectors xi, in the labels yj ,
or in both. Thus, given the source data Ds and its cor-
responding scoring function fs (see Equation 1), a trans-
fer learner aims to help learning the target scoring function
f t : Xt×Y t → R. This reduces the amount of labelled data
in a target task and avoids learning from scratch (for faster
learning). Supervised and unsupervised learning methods,
as described above, have been used to transfer knowledge of
feature vectors and parameters of the scoring function from
the source task(s) to the target related task [71]. A general-
ization of semi-supervised learning (referred to as self-taught
learning) learns high-level representations of the input space
from labelled and unlabelled data from different but similar
domains, and uses them for classifications tasks [76].
In reinforcement learning, transfer learning has been es-

tablished through a multitude of approaches to transfer
knowledge from a source MDP Ms to a target MDP M t.
The type of knowledge to transfer can be derived from the
states S, actions A, state transition function T , reward func-
tion R, and/or (partial) policies optimal π∗ [96]. We can
roughly distinguish between intra-domain transfer (where
only R differs in Ms and M t) and cross-domain transfer
(where also S, A, and T can differ). For intra-domain trans-
fer, all kinds of temporal abstraction methods (e.g. options
[92] or MAXQ [26]) can be used for knowledge transfer. The
same holds for policy reuse [30, 22, 81], which makes use
of previously learned policies in the same domain. Cross-
domain transfer methods include the use of abstract rules
to transfer value functions [103, 97], create shaping rewards
[54], hierarchical reinforcement learning [101, 85], or exploit-
ing state space abstraction by creating abstract skills [53] or
initialization of Q-functions [36]. There are many more ap-
proaches to transfer in RL contexts [57]. What all of these
approaches have in common is that they rely on some sim-
ilarity of source and target task. This is mostly given by
a task mapping function introduced outside of the learning
task or exploitation of external concepts (such as relations
or agent spaces) that are defined a-priori. The big challenge
for interactive systems is to notice and exploit this similarity
on their own [60], e.g., by identifying relevant state variables
[86]. For such tasks, the representation of the state space
is of critical relevance, and the importance of representation
for knowledge reuse is widely acknowledged [106, 35].

3.2.2 Active Learning
In active learning settings, an interactive system has in-

fluence on the learning experiences it gets (using prior expe-
rience, exploration, knowledge or other means). An active
learning algorithm makes use of three data sets: labelled
examples Dl, unlabelled examples Du, and chosen examples
Dc. The last data set is built in an interactive fashion by
the learning algorithm who queries a human annotator for
labels of those examples it is most uncertain of. A number of
methods have been investigated for choosing the examples
to label [84]; e.g. in uncertainty sampling an entropy-based



sampling strategy is defined as

x∗
= argmax

x
−
�

i

P (yi|x) logP (yi|x), (3)

where x∗
is the best query and yi are all the possible labels.

Active learning has been combined with RL for determin-

ing the sensitivity of the optimal policy to changes in state

transitions and rewards. Active RL is used to explore re-

gions of the state-action space where the optimal policy has

the most uncertainty [27]. In addition, active learning has

been investigated for reward function estimation, where the

RL agent queries a demonstrator for examples at specific

states [61]. These investigations have led to more efficient

learning than using passive reinforcement learning.

3.2.3 Social Learning Strategies
Interactive learning means learning in interaction with, or

in the context of other intelligent beings such as humans and

robots. The interactive system can function as a teacher, a
student, an apprentice, etc. Many forms of social learning
can be used in the context of interactive systems, such as

imitation, copying, learning together, learning from others
and many other forms found in the social learning litera-

ture [77]. Exploiting social partners [15] can speed up (or

even make possible) learning a lot and enables the reuse of

knowledge gained by other intelligent beings (which in that

case is similar to transfer learning settings).

One simple extension of RL approaches to interactive sys-

tems is to employ human judgement of the quality of be-

havior as a reward function in a standard RL setting. This

was proposed in the interactive RL approach [99]. Further

application of this idea has led to new insights into RL, for

example on the complexity of learning with a social partner

[88]. In addition, several approaches are now being investi-

gated to add human-generated reward models into RL, see

for example [49]. Alternatively one can also allow the inter-

active system to ask questions in an interactive RL setting

to gain more information about task performance [16]. Such

an approach is essentially an active learning setting.

Learning from demonstration (LfD) has been framed as

a generalization of supervised learning [2]. While a super-

vised learner is given a set of labelled examples, an LfD

algorithm is given example executions D = {si, ai} of a task

by a demonstration teacher. Solving an LfD problem means

finding a policy for selecting action a ∈ A in state s ∈ S. A
demonstration consists of a sequence of state-action pairs,

and a policy can be induced using batch learning or interac-

tive (online) learning. In the former, a set of demonstrations

is given to an LfD algorithm offline. In the latter, demon-

strations are given incrementally as they become available.

Since the quality of the learned policies depends on the qual-

ity of the demonstrations, LfD algorithms need to generalize

from the provided demonstrations. Some approaches first

allow the robot to explore in order to estimate a personal,

local environment model (in the form of affordances), and
subsequently use that model to transform human-generated,

video-based demonstration to the robot’s own action reper-

toire [63]. Recently, several algorithms were compared em-

pirically [102] and many RL-based techniques currently ex-

ist, for example for robotics [50]. A related idea in RL meth-

ods is the inverse RL strategy [115], in which the interactive

system observes a demonstration and tries to estimate the

reward function from that. This way, the agent learns what

actually drives the demonstrated behavior (in other words:

how can one evaluate the demonstrated behavior as good?).

Model-based reinforcement learning approaches have been

used to estimate state transition functions and reward func-

tions for policy learning from demonstrations [5, 43]. Active

learning has also played a role in combination with batch

learning, in that the demonstrator can be queried about

what to do in states with high uncertainty [61].

3.3 Other Relevant Settings

Since this paper is about interactive learning, it is natural

to consider learning settings involving multiple agents. So-

called multi-agent learning systems are used when different

entities with different (possibly conflicting) goals need to

optimize their interactions [87]. Multi-Agent Reinforcement

Learning (MARL) is a generalization of the RL framework

to solve multiple MDPs concurrently [14, 69, 68]. An MDP

in a multi-agent setting is defined as M =< S, Ā, T, R̄ >,

where Ā = {A1, ..., An} is the set of joint actions (one set

for each agent i) and R̄ = {R1, ..., Rn} is the set of reward

functions for each agent. There are three main types of

multi-agents: cooperative, independent and adversarial. In

contrast to cooperative agents that induce a joint learned

policy

π∗
(st) = arg max

āt∈Ā

Q∗
(st, āt), (4)

independent agents induce policies without joint decisions,

i.e. they learn independent Q-functions Q∗
(s, ai), one for

each agent i. They are often used as a benchmark for

other forms of multi-agent learning. All agents use the

same environment states, and the execution of actions af-

fects their shared environment. While independent agents

may use separate reward functions, cooperative agents use

the same reward function in order to optimize a joint policy

Q : S × Ā → R. Although cooperative agents have shown

to outperform independent ones [95], they also require the

need for coordination of selected actions among agents [12,

56]. This coordination is necessitated by the fact that the ef-

fects of each agent-action on the environment depend on the

actions taken by the other agents. In addition, coordinated

MARL has been investigated in the context of hierarchical

RL agents, which often learn to coordinate faster [41, 24].

Finally, adversarial agents induce a policy of the form

π∗
(st) = arg max

at∈A

min
ot∈O

Q∗
(st, at, ot), (5)

where o is the action (or joint actions) of the opponent

agent(s). The goal is therefore to maximize the rewards of

one’s own actions while minimizing the rewards of the oppo-

nent’s actions. Stochastic Markov games have been investi-

gated for adversarial RL [59, 45], which have been useful to

learn strategies from opponent agents. They have addressed

the notions of continuous states [104] and variable learning

rate to improve convergence to optimal policies [13].

Other relevant learning settings include (but are certainly

not limited to) for example preference learning [37], possibly

combined with a RL setting [38]. Active preference-based

RL has been suggested which incorporates preferences in

learning from demonstration. This work seems promising

for optimizing preference-based behaviours in an interactive

fashion [1].

Also relevant for interactive systems, especially if they

need to communicate high-level knowledge with human com-



panions, is the use of commonsense, high-level knowledge

representation languages for both learning and reasoning.

Many examples exist, also in the RL setting [107].

Another interesting setting may involve learning on a large

set of tasks, which has so far received little attention. The

multi-task learning systems described earlier have addressed

only few tasks. Machine learning systems capable of dealing

with a large set of tasks remain to be investigated, which

may involve the integration of several (if not all) machine

learning frameworks described above.

4. ADAPTIVE INTERACTIVE SYSTEMS:

EXAMPLES AND CHALLENGES

In an earlier section we have briefly discussed several im-

portant dimensions of adaptive interactive systems, and in

the previous section we have surveyed some of the main

learning paradigms which could be included in such systems.

Let us now complete our discussion with some examples that

illustrate such notions, and we conclude with an outlook to

the MLIS workshop of this year.

4.1 From Virtual Assistants to Interactive

Conversational Robots

Imagine a virtual assistant operated by voice that enables

dialling, dictation, searching information on the web, man-

aging contacts and agendas, finding locations, and visualiz-

ing maps, among others. Nowadays, these kinds of systems

are ubiquitous in the form of Apple’s Siri, Nuance’s Nina

or Vlingo. In order to fulfill a wide range of tasks, these

assistants make use of a core of language technology com-

ponents. Briefly, they use speech recognition to extract the

user’s words, language understanding to extract the hidden

meaning of words, interaction management to decide what

to do next (in the case of systems beyond a single-query),

language generation to generate textual outputs, speech syn-

thesis to generate spoken outputs, and graphical interfaces

to visualize content to the user (in the case of systems with

multimodal output). Although these components have made

use of several forms of machine learning mentioned in the

previous section, some forms of learning remain to be inves-

tigated further. In particular, learning from demonstration,

transfer and multi-task learning, multi-agent learning, pref-

erence learning, and large-scale learning have not yet applied

to virtual agents.

In addition, though, it is conceivable to develop assistants

with further multimodal capabilities, such as machines that

require to see and move. An example is the Simon robot

[18]. Its task is to learn different configurations of tangram

pairs and associate them with meanings. A small round

object on top of a larger round object, for example, is a

snowman. The robot learns such mappings in a supervised

fashion from human teachers that provide a range of posi-

tive and negative labelled examples. From these, the robot

will try to make as many generalizations as possible. For

example, presented with a set of objects that differ along all

dimensions except for colour, Simon can learn the concept

of the colour red. Since often the space of possible configu-

rations is very large, though, it has the additional capability

of signalling to the human teacher which objects it is still

confused about. This is done through active learning: the

robot raises learning queries to the human teacher by iden-

tifying objects using non-verbal gestures and requests labels

for them. This skill can substantially accelerate exploration

of the hypothesis space and thereby new learning. While

Simon learns online, from real human interactions, many

of its behaviours can seem simple at first glance and lack

the apparent sophistication displayed by the commercially

available virtual assistants discussed above.

In contrast to agents like Simon that learn from relatively

few non-verbal examples due to its small world, interactive

systems and robots in dialogue domains [58, 114] typically

require large training data sets–often too much to provide

learning during the course of the interaction. Consequently,

most work to-date has relied on training from simulated dia-

logues [83] with little advances in online learning [23]. While

some authors have made progress towards learning dialogue

behaviour from human-machine interaction, they still rely

on some form of simulation or delayed re-training. [11], for

example, describe a spoken dialogue system that learns to

optimize its non-understanding recovery strategies on-line

through interactions with human users based on pre-trained

logistic regression models. The system is re-trained every

day. [21] present a dialogue system in the navigation domain

that is based on hierarchical RL and Bayesian Networks and

re-learns its behaviour after each user turn, using indirect

feedback from the user’s performance. [39] present a spo-

ken dialogue system that uses Gaussian Process-based RL.

It learns from binary feedback that users assign explicitly

as rewards at the end of each dialogue and that indicate

whether users were happy or unhappy with the system’s

performance. The system is then re-trained after every dia-

logue. [25] present a robot companion that learns to ask and

answer questions, which uses hierarchical RL with dynamic

tree-based state representations that can grow during the

course of the dialogue. This enables users to take more flex-

ible control of the interaction than in typical hierarchical RL

settings. Some of the reasons that online learning has been

little explored so far include the large number of training ex-

amples required, and the subjective nature of human assess-

ment of dialogue behaviour. Nonetheless, the progress above

leads to interactive systems and robots that avoid learning

from scratch every time a new system is constructed.

4.2 From Simple Behaviors to Generalized

Skills

When it comes to non-verbal behaviors, possibly com-

bined with verbal ones, the number of possibilities for learn-

ing behaviors, policies or skills is basically infinite.

Learning low-level behaviors and predictions is receiving

attention lately in the area of sensorimotor learning, in

which basic perception-action interaction loops are learned

from large, noisy data streams. An interesting algorithm

from the field of RL is Horde [91] in which many simple

daemons learn to predict single pieces (bits, features) of in-

formation from a stream of data. Each daemon learns off-

policy, generalizing value functions using linear value func-

tion approximation. An example prediction would be “what

would my speed be after constantly hitting the acceleration

button?” Such adaptive sensorimotor control loops form the

basis of any interactive system functioning in the real world.

On a higher level, many forms of interaction could be

the subject of an optimization process using learning. Non-

embedded, non-embodied types of systems, such as inter-

active game playing programs, may exhibit many forms of

learning. For example, learning how to play games, how



to do that in interaction, and also how learn how to adapt

to the human player such that game playing experience is

optimized (not too easy, not too difficult, fun, entertaining,

challenging). Many examples, ranging from Checkers and

Chess, to Go, and to real-time strategy games (RTS) and

first-person action shooters (FPS), exist in the literature

(see [94] for a survey). Online versions of those systems,

in terms of massively online internet games (e.g. World of

WarCraft) may require more sophisticated interactive ma-

chines that can handle the real-time, massively multi-player,

and social nature of those games. Many forms of social learn-

ing would be required here, as well as ways to do opponent

model learning.

Now, moving towards physical, embedded, embodied sys-

tems, we again open up more opportunities and challenges

for adaptive, interactive systems. In addition to standard

learning settings, physical aspects of environments generate

new learning settings. For example, the aspect of proxemics

[64], e.g. the distance between interaction partners, in the

interaction becomes very important suddenly. Combining

such issues with gaze [65] and looking direction give rise to

whole new problems. For example, people will keep a greater

distance between them and a robot if the robot is directly

looking at them while the person is moving. On the other

hand, gazing behavior can greatly help when looking at se-

mantically meaningful objects in the environment, especially

when coupled with a verbal dialogue mentioning these ob-

jects. Learning such aspects, and how intentions and plans

can be detected from physical movement or gaze (or vice

versa) is a very interesting direction for research, both for

interpreting behavior as well as perception in general.

In addition to movements and visual input, physical en-

vironments also give opportunities to feel, i.e. using tactile

interactions [3]. Learning what a pat on the back means

in a given context would greatly benefit overall understand-

ing of social mechanisms. Somewhere in between are visual

input patterns of movements that are used to convey mean-

ing: gestures [82]. Typically gestures have been studied in

the human-computer interaction field, but having an intel-

ligent, pysically present interaction partner means that ges-

ture recognition should be paired with gesture generation

and it should be learned (and taught) both ways. In addi-

tion, many communicative gestures are not so much inten-

tionally, but they do follow some (social) conventions [42].

Many of these (social) signals and cues play a vital role in

interaction and should become part of any learning setting.

These are all interesting directions for research.

Scaling up even more towards general skills, a recent trend

in general AI, and also interactive systems such as robots,

is to scale up using high-level representations (and accom-

panying learning algorithms). An interesting effort is the

RoboEarth language [109], which was developed to transfer

learned knowledge from one robot to another, accross the

earth, accross different hardware, and accross different tasks.

For example, the high-level skill fetch-beer could be sub-

divided into tasks such as locate-kitchen, find-fridge, open-

door, grab-bottle, navigate-to-user, and so on. Depending

on the level of generalization, a robot having mastered this

skill could transfer a generalized plan to other robots facing

similar requests. Many recent adaptive robot systems are

being endowed with high-level programs which incorporate

enough knowledge about the task, but which also leave open

the opportunity to learn or finetune behaviors in the con-

text of changing situations, uncertainty and noise. Many of

these systems generalize from simple behaviors towards gen-

eral skills using more powerful representations. For example

[63] generalize affordance models first developed for simple

situations of a single object (with physical properties such

as size) to general situations involving structured situations

involving many objects and relations between them. This

research combines learning settings for object perception,

robot control, grabbing positions, learning from demonstra-

tion, dynamics models, and several others; all both for low-

level data, and for high-level structures. Such systems are

typical examples of adaptive, interactive systems with gen-

eral intelligence that need to be developed further.

4.3 Some Challenges
To build intelligent interactive systems involving verbal

and non-verbal skills, a combination of robust interaction

and autonomous learning is required. For this, the following

challenges need to be overcome in future research.

1. Interactive robotic systems are currently developed

and trained for a specific task and often do not gen-

eralize to other tasks. As a consequence, a significant

amount of system development is required for the in-

teractive system or robot to take on even closely re-

lated tasks.

2. Interactive systems, such as robots, are hindered by

several big challenges concerning their learning setting

[50]. These include the curse of X with X being dimen-

sionality, real-world samples, real-world interactions,

model errors and lack of goal specifications. Progress

on all these challenges is needed to acquire truly intel-

ligent, adaptive systems.

3. Typically, these systems are trained in simulation en-

vironments and therefore can fail to learn behaviours

that are generalizable to the real world.

4. They assume a known and fixed environment, while

the real world is partially known and dynamic.

5. They regard a fixed subset of possible sensory inputs,

usually tailored to the limited number of tasks to be

mastered. When aiming at being adaptive also in the

type and aim of interaction, the question of relevant

input features, their detection, selection, and represen-

tation becomes evident.

6. Nowadays, since interactive systems are (sometimes by

far) not capable of exhibiting all desired features for

interaction (either in terms of necessary intelligence or

in terms of real-time requirements), so-called Wizard-

of-Oz experiments are conducted [80]. In such exper-

iments parts of the interactive system are being con-

trolled by a human (without possible human interac-

tion partners actually knowing). It is unclear what the

consequences of this are for developing truly generaly

interactive skills.

7. In addition, evaluation standards [113] for interative

systems are fairly undeveloped. Using existing stan-

dards for human-computer interaction may be possible

for limited application scenarios, but we also need eval-

uation metrics for things as “how well does my robot

react to my sloppy teaching?”, “how much progress did

the system make today in involving people in joyful in-

teractions?” and “what is the influence of the physical

context on the learning progress of the system so far?”.



8. They assume a small and fixed knowledge base, which
drastically restricts human-machine interactions to
small rather than multiple tasks with flexible inter-
change between them. A potential for future inter-
active systems are automatically extracted large-scale
knowledge bases such as NELL [17].

9. Interactive conversational systems face the long-
standing challenge of speech recognition and under-
standing, especially for distance-based human-robot
interaction without the need of headset microphones.

10. Finally, a more wholistic perspective is needed to
achieve a principled and seamless integration from dif-
ferent fields such as language, robotics and vision.

4.4 Outlook on MLIS

The Machine Learning for Interactive Systems (MLIS)
Workshop Series2 includes contributions from all areas of
perception, action and communication, providing an inter-
disciplinary perspective with a common thread. Particular
topics of interest in 2013 that span through the contributions
are more autonomous learning, away from human interven-
tion, and the exploration of new feedback signals.

In terms of perception, [29] present work on spatio-
temporal recognition of facial expressions, human activity
and hand gestures. The approach is based on finite Beta-
Liouville mixture models, which can learn from a small
number of parameters and find the best number of mixture
components automatically–without requiring hand-specified
constraints. Drawing on geometric features, but with a focus
on learning object-action relations for object manipulation,
[111] infer actions that can be performed on unseen objects
using homogeneity analysis. An interactive system, such as
a robot performing practical tasks, can in this way transfer
its existing knowledge of what actions can be performed on
particular objects to new instances, putting it in a position
to interact with new environments.

Learning through action in an unknown environment is
also addressed by [46]. The authors optimize an agent’s be-
havior directly based on feedback in the form of a user’s
brain signals, particularly those signals triggered after com-
mitting or observing an error. Since such signals provide
limited information as to the nature of the error, inverse re-
inforcement learning is used to infer the user’s overall goal.
Learning through feedback is also relevant to dialogue. [31]
optimize the dialogue behavior of a system based on posi-
tive and negative social cues, which serve as additional feed-
back besides objective rewards. Such signals are available
throughout the interaction and allow the agent to learn from
multiple sources, objective and social. Finally, evaluation is
an important aspect of every interactive system. [32] pro-
pose to optimize the interaction time of systems based on
a combination of the Keystroke-Level Model and a Markov
Decision Process (MDP). An MDP, trained from real user-
system interactions, offers the possibility to simulate differ-
ent conditions, so that first usability tests can be conducted
under reduced resources and costs.

The theme of autonomous learning and skill acquisition
is also reflected in our invited talks. [79] will discuss inter-
active systems that learn from raw, real-world input data
based on generalization and learning from experiencing suc-
cess or failure. [52] will give an overview of methods for

2http://mlis-workshop.org

autonomous skill acquisition that allow robots to acquire
general learning skills to transfer knowledge from one task
to another. [70] will provide an overview of transfer learn-
ing methods and their application to three different tasks:
language processing, image classification and Wi-Fi-based
localization. [6] will provide a commercial perspective on
the development and application of interactive robots and
introduce the research carried out at the Aldebaran A-Lab.
Finally, [19] will discuss some requirements and progress in
applying open knowledge to service robots within the scope
of a large set of tasks.
We look forward to inspiring presentations and discussions

at MLIS-2013 and beyond!
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[21] H. Cuayáhuitl and N. Dethlefs. Optimizing situated dialogue
management in unknown environments. In INTERSPEECH,
pages 1009–1012, 2011.
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[25] H. Cuayáhuitl, I. Kruijff-Korbayová, and N. Dethlefs.
Hierarchical Dialogue Policy Learning using Flexible State
Transitions and Linear Function Approximation. In COLING
(Demos), pages 95–102, 2012.

[26] T. G. Dietterich. Hierarchical reinforcement learning with the
MAXQ value function decomposition. International Journal
of Artificial Intelligence Research, 13:227–303, 2000.

[27] A. Epshteyn, A. Vogel, and G. DeJong. Active Reinforcement
Learning. In ICML, pages 296–303, 2008.

[28] D. Ernst, P. Geurts, and L. Wehenkel. Tree-Based Batch
Mode Reinforcement Learning. JMLR, 6:503–556, 2005.

[29] W. Fan and N. Bouguila. Expectation Propagation Learning
of Finite Beta-Liouville Mixtures for Spatio-temporal Object
Recognition. In Proceedings of the Second Workshop on
Machine Learning for Interactive Systems (MLIS). ACM
ICPS, 2013.

[30] F. Fernández and M. M. Veloso. Probabilistic Policy Reuse in
a Reinforcement Learning Agent. In AAMAS, pages 720–727,
2006.
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