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Abstract

Climate change will affect how water sources are
managed and monitored. Continuous monitoring
of water quality is crucial to detect pollution, to
ensure that various natural cycles are not disrupted
by anthropogenic activities and to assess the effec-
tiveness of beneficial management measures taken
under defined protocols. One such disruption is
algal blooms in which population of phytoplank-
ton increase rapidly affecting biodiversity in marine
environments. The frequency of algal blooms will in-
crease with climate change as it presents favourable
conditions for reproduction of phytoplankton. Ma-
chine learning has been used for early detection
of algal blooms previously, with the focus mostly
on single closed bodies of water in Far East Asia
with short time ranges. In this work, we study four
locations around the North Sea and the Irish Sea
with different characteristics predicting activity with
longer time-spans and explaining the importance
of the input for the decision making process with
regards to the prediction model. This work aids
domain experts to monitor potential changes to the
ecosystem done by human interference over longer
time ranges and to take action when necessary.

1 Introduction

Harmful algal blooms (HABs) occur when the pop-
ulation of phytoplankton increase rapidly due to
nutrient overload, causing environmental changes
such as sunlight blocking and oxygen depletion [13].
These changes affect the ecosystem as well as public
health since consumption of aquatic life affected
by these blooms pose a health risk [I0]. Severe
effects of HABs lead to eutrophication which may
result in further ecosystem disruption. Occurrence

*Corresponding Author:anon@anon.com

of eutrophication involves the creation of oxygen
deprived zones due to the extreme number of de-
ceased plants and animals, resulting in dead zones
with no ability to support life [5].

With the increasing temperatures due to climate
change, it is expected that the frequency of algal
blooms will increase and will be seen in new re-
gions [25]. In addition to the ecological impacts,
occurrence of algal blooms has negative economical
impacts. These include drinking water treatment
costs and increase to the cost of preservation of
biodiversity [9]. Regions where these blooms are
frequent see lower sales in sectors related to tourism
and lower income from fisheries [I, [14].

To prevent this phenomena from occurring, pre-
ventive measures could be taken which includes early
detection models that benefit from in-situ data and
harness the power of machine learning.

Modelling algal blooms has several challenges.
Algal blooms are extreme events, therefore posi-
tive labelled samples are extreme low (3-5%) in the
dataset which needs to be addressed during training
with methods such as SMOTE or label weighting
and model evaluation with weighted F1 score. The
generalisation capability of the models differ based
on the assumptions it makes. To overcome this
challenge, a model has to be trained with data
from various locations or should use generative or
representation learning approaches. Deep learning
models require vast amounts of data for training
which is solved with continuous and frequent moni-
toring. The occurrence of algal blooms is inherently
complex as the underlying mechanism is XXX by
many factors such as nutrient intake of nitrate (N)
and phosphorus(P) through industrial pollutants
or fertilizers, the water temperature and available
light.
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2 Related Work

The majority of thie approaches apply thresholding
to categorize labels and forecast future behaviour or
apply regression to the problem of HAB detection
using dissolved oxygen or chlorophyll-a as the target
variable, both of which increase with higher photo-
synthetic activity from aquatic plants or algae. The
chlorophyll concentration will increase during an
algal bloom due to nutrient intake whereas the oxy-
gen concentration will increase initially with high
photosynthetic activity and drop afterwards due
to increasing decomposer population. It should be
noted that the behaviour of inland waters and sea-
water differ from one another as seawater bodies can
act like large reservoirs so they are less susceptible
to change.

The detection time-spans of the current ap-
proaches are usually short ranging from 12 hours
to 4 days. [24] use temporal attention combined
with LSTMs to predict the chlorophyll-a value at
most 12 hours ahead in Fujian, China. [21I] predict
the chlorophyll-a value 1 to 3 days ahead, using a
combination of an ensemble of ANNs with Discrete
Wavelet Transform. [6] use sensory data to pre-
dict the chlorophyll-a in certain locations in South
Korea with LSTMs. They aimed to predict the
chlorophyll-a concentration a day ahead and 4 days
ahead using this approach. [I8] compares ANN, gen-
eralized regression network and SVM in the context
of predicting chlorophyll-a values 7 or 14 days ahead
for Tolo Harbour, Hong Kong. [28] uses Extreme
Learning Machine to predict chl-a vaules 7 days
ahead along several weirs on Nakdong River, South
Korea.

The most common approaches lean towards using
RFs, SVMs and ANNSs to predict algal blooms. [20]
use RF to predict the chlorophyll-a concentration
in Urayama Reservoir and Lake Shinji, Japan. [27]
use sensory data to predict HABs using AdaBoost
with SVM and RF in Yuyuantan Lake, China. [8]
use ANNs combined with correlation and feature
selection to predict the dissolved oxygen value in
Lake Juam, South Korea. [29] predicts chl-a con-
centration in Dianchi Lake, China using Wavelet
Analysis and LSTMs. [20] uses ANNs and SVMs to
predict chl-a concentration in Juam and Yeongsan
Reservoir, South Korea 7 days ahead.

The majority of the study sites relate to Far East
Asia, Lake Erie or the Coast of Florida in the U.S

[26, [7, [4]. The study of the locations of this work
differ from the majority as well since most of the
focus is divided between Southeast Asia and United
States whereas our study area is the North and Irish
Sea. Most of the approaches use models like SVM
or RF or using LSTMs to analyse the long/short
term temporal patterns in the data. The approaches
that classify the blooms use static values or expert
information to classify the responses as in the case
of [19] and [27], our approach takes the context
of the measurements into account as factors such
as temperature since those factors affect cellular
activity and oxygen solubility in water [17].

In this work, we propose a new model that im-
proves the detection of abnormal activities in certain
locations of the North Sea and the Irish Sea using
in-situ data and a flexible labelling method with
varying ranges of detection and a longer range of
time which was not taken into account in the ma-
jority of the approaches, with transformer networks
and convolution operations. Our approach gener-
ates a possible sequence at day = + i , i ranging
from 1 to 7, using observations at day x with a
representation learning approach and filtering the
necessary parts of the generated sequence to pre-
dict a label. In addition, we explain the reasoning
behind the predictions using SHAP to aid experts
in understanding the effects of observations. The
scope of this work aims to detect the beginning of
these blooms due to mechanics of the phenomenon.

3 Dataset & Preprocessing

The data for this work was collected by ESM2 and
ESMx data loggers at four different moorings de-
picted in Figure[I] The data was collected as a part
of The National Marine Monitoring Programme
(NMMP) to monitor eutrophication regarding The
Convention for the Protection of the Marine En-
vironment of the North-East Atlantic (OSPAR)
and Marine Strategy Framework Directive (MSFD)
assessments. The whole dataset was partitioned
into four fractions based on location. Each of the
datasets has different characteristics due to their
locations such that the Liverpool buoy being near
a maritime route, WestGab being near wind farms,
TH1 being near the delta of River Thames and
Dowsing being in the open sea. It is known that the
chlorophyll-a concentration have been decreasing in
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certain hotspots in the Southern North Sea [23].

The periodicity and the relationship between the
variables were analysed by [3, 2, 12] with varying
date ranges and locations by performing wavelet
analysis. The periodicities of variables depend
on the season and range between 6 hours to 24
hours. The data consists of eight features; chloro-
phyll fluorescence (fluor), turbidity(ftu), dissolved
oxygen concentration(o2conc), salinity(sal), temper-
ature(temp) and photosynthetically active radiation
(PAR) at depths 0, 1 and 2 meters (depth-0, depth_1,
depth_2). The majority of the data was collected
at 20-30 minute intervals at each station. The data
used spans the range between Jan 2009- Dec 2019.
Before given as input, the data was normalized with
z-score normalization.

° DOWSING}

Figure 1: Locations of moorings

Depending on environmental conditions the max-
imum amount of dissolved oxygen in a water body
can differ. The labelling process used the following
equation to calculate the maximum amount of dis-
solved oxygen concentration in the water given the
temperature and salinity [11]:

Do = In(Ag + ATy AyT? + AsT?+
AsT3 + AT + AsTO+
S(Bo + BiT + BoT? + B3T?) + CS?)

(1)

where Ay, ..., As, By, ..., B3 and C are coefficients of
the equation given in Table[l} S is the salinity and
T is In[(298.15 — Tp)(273.15 + Tp) '] where To

is the observed temperature value at time ¢. Algal
bloom starts with the increased algal activity in a
body of water which results in increased dissolved
oxygen therefore thresholding was used, comparing
the current dissolved oxygen to the maximum per-
centage of dissolved oxygen the water can hold at
time t. If the percentage is above 105% the max-
imum threshold the label will be 1, else 0. The
labelling process is done per day based on mean
dissolved oxygen.

Coefficient Value
A 2.00907
Ay 3.22014
A, 4.05010
As 4.944457
Ay —2.56847 %« 107!
As 3.887674
By —6.24523 % 1073
By —7.37614 % 1073
B, —1.03410 + 102
Bs —8.17083 % 1073
C —4.88682 % 10~ 7

Table 1: Coefficients for Equation

4 Methodology

The baseline models for this work were chosen as
the SVM and RF as they were the most popular
machine learning models for this task. We also in-
clude an isolation forest method to observe if the
abnormalities could be identified in an unsupervised
fashion by identifying the differences between nor-
mal occurrences and abnormalities. A convolutional
VAE is also includedsif relevant information could
be extracted from a latent space regarding these
abnormalities with varying filter sizes. Luong at-
tention model is also included to observe if any
improvements could be made over LSTM models.
The proposed model (TF-Conv) consists of
four components: a time embedding component
(Time2Vec), a transformer, convolutional layer and
linear layer with softmax [22, [15]. The embedding
layer maps the input to two domains: time and
frequency, the transformer is used to generate the
sequence for n day(s) ahead, which is ranged be-
tween 1-7. Separate embedding components are
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Figure 2: Proposed model for predicting oxygen
thresholds. The input consists of all of the observed
variables at day n, whereas the target consists of all
variables except dissolved oxygen at day n + ¢. The
output is a binary variable denoting if the average
dissolved oxygen at day n + ¢ is below or above a
threshold or not.

used for input and target sequences as they differ@in
number of features. The input is the measurements
of day = and the target is the measurements of day
T + 4 where ¢ is the number of days into the future
ranging between 1 and 7. The input data is used
to generate the target observations using the trans-
former network. The target variable is used during
training to compute the loss between the generated
sequence and the ground truth. Masking is used
at the decoding stage of the transformer. During
training teacher forcing is used for the transformer.
The ground truth is given as the target value during
decoding. During testing, the previous output of the
transformer is used as the target tensor, initially a
tensor of zeros of shape (1, seq_len, num_features)
is given as target. The convolutional layer is used
for feature selection. The generated sequence does
not include the dissolved oxygen so as not to over-
fit the convolution part of the model to only the

dissolved oxygen. The generated sequence is taken
through a 1-D convolution layer to serve as a feature
selector. Lastly, the filtered observation is passed
through a linear layer to classify the sequence. The
final output of the network is a binary variable
which denotes if the daily average dissolved oxygen
is above the threshold or not. Figure [2] illustrates
the proposed architecture.

GradientSha]ﬂ was used as the explanation model.
For the explanation model’s baselines, we have used
the training data of the prediction model. The out-
put of the explanation model is per sample and per
time-step. To give an overall view of the explana-
tions we have decided to aggregate the explanations
per day and compute the averages per feature.

5 Results

The predictions are done i days into the future given
the observation at day x. ¢ ranges between 1 to 7.
70% of data of TH1 buoy was used for training,
30% for validation. The other three sites are used
for testing. The F1 scores of each day for each site
are presented in Figure |3l The mean F1 scores for
all test locations are illustrated in Figure [@ F1
score was used as the performance metric, due to
the issue of label imbalance in the datasets. The
weights of recall and precision were equal for the
F1-score. The labels were inversely weighted during
training. Adam optimizer was used for this task
with 200 epochs and earlystopping with a patience
of 15 epochs [I6]. The embedding size of time2vec
was set to 10 and the convolution window was set
to 2 for all experiments. Rest of the parameters are
given in Table [2] based on prediction day.

6 Discussion

In terms of mean f-score, the proposed model TF-
Conv is the most suitable model. RF had problems
such as overfitting as it performs nearly perfectly in
the training site, TH1, whereas it performs poorly in
other locations, SVM suffers from the same phenom-
ena for the Dowsing buoy. To obtain satisfactory re-
sults for RF, it could be trained on all four locations
which might cause memory issues and maintenance
costs. IF assumes that there are outliers in the

Thttps://captum.ai/api/gradient_shap.html
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Day Batch Size # of Encoder/Decoder Layers  # of Attention Heads Transformer Network Dimensions Learning Rate Dropout Rate
1 16 5 2 32 0.003163 0.389
2 6 4 5 256 0.003837 0.314
3 6 3 5 32 0.001766 0.177
4 4 1 5 128 0.004316 0.284
5 32 2 2 32 0.000756 0.38
6 16 4 5 32 0.004591 0.213
7 8 4 5 32 0.003786 0.226

Table 2: Hyperparameters used for each model where the value of day is ¢ days into the future.
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Figure 3: F1 scores for abnormality prediction for
all 4 buoys
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Figure 4: Mean F'1 scores for abnormality prediction
for testing buoys: WestGab, LivBay and Dowsing

data which can be predicted due to their different
properties and low occurrence rates. [Therresults
show that the increased activity in all of the sites
were not outliers due to their properties.

The lowering performance of the attention model
after day 2 indicates that Luong attention is not
able to model further into the future. The inputs
for the deep learning models are aggregated based
on observation day whereas the machine learning
models use averages of features based on observa-
tion day. The use of aggregation aids the deep
learning models’ generalisability since these models
are exposed to raw data rather than a summarized
version. It can be noticed that all models’ perfor-
mance is lowered for WestGab which might indicate
the optimal conditions of these abnormalities differ
from location to location.

The data itself had varied number of samples per
day ranging from 48-75 observations per day and
skips in the data with varying lengths which can
possibly be solved by a separate VAE or GAN. TH1
was chosen as the training set due to its location and
properties. The sawtooth-like shape of the scores in
WestGab and Dowsing indicate that an existence of
periodicity in these locations.

The explanation model we used was GradientShap
which works by adding random noise to data sam-
ples that were sampled between the baseline and the
input and computing the gradients. Experimenta-
tion for different dates and with various baselines al-
ways showed that the previously measured dissolved
oxygen values were always the most important fea-
ture as depicted in Figure [5l It also shows that the
order and the magnitude of the importances change
from day to day. The model used assumes feature
independence and the explanation model is linear.
As we try to predict further into the future, it is
evident that o2conc at day x becomes more and
more important for detection. This is supported by
the fact that the performance of the model spikes

so IF’s basic
assumption did
not hold?
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Figure 5: Left: Feature importances of SHAP for predictions 1-day ahead. Right: Feature importances of

SHAP for predictions 7-days ahead.
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7 Conclusion and Future Work

In this paper, we proposed a novel model for de-
tecting algal blooms by predicting dissolved oxygen
concentration 1 to 7 days ahead using time em-
beddings, transformer network and a convolutional
layer. The proposed model increases the predic-
tion performance in terms of F-score from 0.270 to
0.735 on average ranging from 1 to 7 days ahead
of occurrence. The importance of each feature is
provided with SHAP values per day increasing in-
terpretability of the model. We have observed that
the most important feature is the dissolved oxygen
at observation days.

Data with different frequencies such as ship-based
data or data with different modalities could be used
to improve the detection process. This work could
be extended to closed bodies of water. The current
results indicate that models could be tested for
different day ranges than they were trained on to
test the model’s generalisability. The stability of
the model could be checked by predicting bloom
events further than seven days. Generalisability
among different locations was not included in the

scope of this work, transfer learning methods could
be used in the future to test the efficiency of this
architecture.
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