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Abstract

Natural Language Generation systems in interactive settings often face a multitude of choices,

given that the communicative effect of each utterance they generate depends crucially on

the interplay between its physical circumstances, addressee and interaction history. This

is particularly true in interactive and situated settings. In this paper we present a novel

approach for situated Natural Language Generation in dialogue that is based on hierarchical

reinforcement learning and learns the best utterance for a context by optimisation through

trial and error. The model is trained from human–human corpus data and learns particularly

to balance the trade-off between efficiency and detail in giving instructions: the user needs

to be given sufficient information to execute their task, but without exceeding their cognitive

load. We present results from simulation and a task-based human evaluation study comparing

two different versions of hierarchical reinforcement learning: One operates using a hierarchy

of policies with a large state space and local knowledge, and the other additionally shares

knowledge across generation subtasks to enhance performance. Results show that sharing

knowledge across subtasks achieves better performance than learning in isolation, leading to

smoother and more successful interactions that are better perceived by human users.

1 Introduction

Natural Language Generation (NLG) systems across domains typically face an

uncertainty with respect to the best utterance to generate in a given context. This is

particularly true in interactive scenarios that involve constant verbal or non-verbal

feedback from a human user. The reason is that utterances can have different

effects depending on the physical circumstances, addressee and interaction history

of the context in which they occur. This paper presents a hierarchical optimisation

approach for situated NLG.

Situated NLG can be defined as generation in an enriched physical context,

including features of a (real or virtual) environment, such as landmarks and users.

The context in this setting is typically not static but undergoes dynamic changes

triggered by linguistic or non-linguistic actions by the system or the user. Often, as

in our case, situated NLG also deals with an additional element of interactivity in

that the user can immediately react to the system’s instructions through linguistic or

non-linguistic actions. Figure 1 shows an example of the type of generation scenario



2 N. Dethlefs and H. Cuayáhuitl

Fig. 1. (Colour online) Generation example in the GIVE domain (Byron et al., 2009), where

some instructions are more felicitous than others. The intended referent button is circled.

we will address in this paper. It shows a spatial situation (from the perspective of

the user) and a set of possible instructions which differ with respect to their level of

granularity in identifying the (circled) referent button. A trade-off in situated NLG

is often between generating efficient instructions and detailed instructions. Since the

user is constantly moving through a virtual world, instructions need to contain just

the right amount of information so that the user’s cognitive load remains low and

they do not get lost. In the figure, only instruction (c) seems to balance this trade-off

appropriately. Instruction (a) is ambiguous and instruction (b) is complete, but long

and difficult to memorise for a user on the move.

While different techniques are conceivable to address this efficiency versus detail

trade-off, we will present an optimisation framework that is based on hierarchical

reinforcement learning (RL) and optimises its decision-making over time through a

trial and error search. To this end, we design a hierarchy of learning agents, each of

them representing a specific generation subtask. A hierarchical policy is then trained

from interaction with a simulated environment which was trained from a corpus of

human–human interactions. We argue that by using RL, an NLG agent is able to

try a multitude of generation strategies under different circumstances and discover

the optimal one automatically.

The hierarchical setup offers the additional benefit of a divide-and-conquer

approach. This provides a modular and easy-to-maintain architecture, makes learning

faster and our technique more scalable than flat RL setups due to the reduced

policy search space. A possible disadvantage of using a modular architecture is

that knowledge variables are specific to a particular generation subtask, such as

referring expression (RE) generation or navigation. This automatically assumes

an independence among subtasks which may not necessarily hold in practice. We

therefore compare two different versions of a hierarchical reinforcement learner in

this paper: one that shares task-based knowledge across generation subtasks, using

a joint optimisation, and another that does not, using an isolated optimisation. Shared

knowledge is predefined by the system designer. Our hypothesis is that by sharing

knowledge the learning agent becomes more aware of the global effects of its actions

rather than being confined to the local context of a particular subtask. By trying
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alternative sequences of decisions and observing the user’s reactions, the system is

then able to predict their effects on the utterance as a whole.

The paper is organised as follows. In Section 2, we review related work in

three areas: (i) The application of RL to NLG, (ii) the sharing of knowledge

across subtasks and (iii) the state of the art in situated NLG. Section 3 will then

introduce the Generating Instructions in Virtual Environments (GIVE) task, the

situated scenario we are addressing in this paper. Subsequently, Section 4 will give

an overview of flat and hierarchical RL and discuss its application to situated NLG.

We will present the learning agent’s training setting in Section 5, followed by an

evaluation in Section 6. The evaluation consists of two parts: (a) A simulation-

based evaluation; and (b) a task-based evaluation comparing joint and isolated

policy learning for hierarchical RL. It also makes a comparison with other state-of-

the-art approaches to situated NLG. Finally, Section 7 will draw conclusions and

discuss directions for future research.

2 Related work

In this section we will review previous research on applying RL to optimising

sequences of NLG decisions and its relation to planning approaches. Further, we

will discuss the sharing of knowledge across application subtasks and the state of

the art in situated NLG. For each strand of work, we highlight commonalities and

differences with our proposed approach.

2.1 Reinforcement learning for NLG in interactive systems

Reinforcement learning has become a popular method for optimising dialogue

management decisions for flat (Singh et al. 2002) and hierarchical decision problems

(Cuayáhuitl et al. 2010). It has been appreciated especially for its ability of automatic

optimisation, discovery of fine-grained behaviour from human data and adaptability

under uncertain circumstances (Williams and Young 2007).

The NLG community has successfully adopted RL rather recently and with a

specific focus on optimising generation for interactive systems (Lemon 2011). Rieser,

Lemon and Liu (2010) apply RL to information presentation in a spoken dialogue

system that gives restaurant recommendations to users. A particular focus is on

whether database hits should be summarised for the user, contrasted given the

user’s preferences or whether a single recommendation should be given. An optimal

action policy here depends on both the user’s preferences and the number of

database hits. Similarly, Janarthanam and Lemon (2010) use RL to optimise NLG

in troubleshooting dialogues where users are assisted in setting up a broadband

connection. A special focus of this work is the fact that the user learns new jargon

during the interaction with the system so that the learnt policy needs to be sensitive

to a dynamic user model.

Reinforcement learning has also been applied to other natural language processing

tasks (Branavan et al. 2009), which often use task completion as the primary

component of their reward function and therefore require less or no simulation. In
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contrast, RL applications in dialogue or generation typically need to be trained in

interaction with human users, which makes training more expensive. Even though

simulated environments can be used, they often rely on linguistic or pragmatic

features which may require annotation, depending on the domain. One possible

solution to mitigate this problem has been to use Wizard-of-Oz data collections

(Rieser and Lemon 2008), which automatically log wizard actions and therefore can

be used to bootstrap simulated environments from small data sets.

Research on RL for NLG is in several ways related to planning. In particular, it

is often seen as a possible solution to Artificial Intelligence (AI) planning in which

well-studied algorithms are used for finding action strategies for NLG tasks from a

predefined set of knowledge and constraints. Please see Koller and Petrick (2011) for

a recent survey of planning approaches to NLG. In contrast to other approaches,

RL is particularly suited for tasks in which we are unsure of the best strategy to

achieve a goal and wish the system to find an optimal policy automatically from

interactions with the environment and the user.

This paper follows the general direction of the RL research discussed above by

representing situated NLG as a sequential decision-making problem that can be

solved using trial and error search in an interactive context. In contrast to previous

work, however, which has relied predominantly on flat RL, we formulate our NLG

task as a hierarchical optimisation problem. This is often more scalable than flat RL

settings and can be applied to larger search spaces, such as more complex generation

scenarios than those that can be addressed using a flat RL setup.

2.2 Sharing knowledge across subtasks

A number of recent studies have presented evidence in favour of a joint treatment of

subtasks by sharing knowledge among them. Angeli, Liang and Klein (2010) present

a robust domain-independent NLG system that employs a joint treatment of content

selection and surface realisation (SR). In their approach, each generation decision is

handled by a log-linear classifier that has access to all previous decisions and achieves

better accuracy and human ratings than a system whose information is restricted

to the local context. Lemon (2011) presents a joint optimisation approach to NLG

and dialogue management in the area of information presentation. He shows that

using RL for the optimisation, a jointly optimised policy can learn when it is most

advantageous to present information to the user or when to ask for more details

to refine the query. In Cuayáhuitl and Dethlefs (2011b), we present a hierarchical

RL approach to spatially aware dialogue management by optimising it jointly with

route planning in a wayfinding domain. We show that the spatially aware system –

optimised jointly – generates the shortest possible route by adapting to individual

users’ prior knowledge by guiding them past landmarks they are familiar with and

avoiding junctions that cause confusion.

In addition to the studies discussed above, there have been suggestions for a joint

treatment of syntax and semantics/discourse (Stone and Webber 1998; Marciniak

and Strube 2004; Marciniak and Strube 2005) of NLG and speech synthesis (Bulyko

and Ostendorf 2002; Nakatsu and White 2006), speech and gestures (Stone et al.
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2004) and content planning and realisation (Bontcheva and Wilks 2001). All of

them have demonstrated that a joint treatment of interrelated tasks can significantly

outperform its isolated counterpart. All of the joint architectures discussed above

(Angeli et al. 2010; Lemon 2011; Cuayáhuitl and Dethlefs 2011b) work essentially by

making additional knowledge available to the components involved. Typically, this is

knowledge that has traditionally been specific to one module of the system and is now

shared between two or more modules in order to achieve a joint knowledge base on

which to base decisions. These joint architectures have deliberately not attempted to

share their full knowledge base, which would be computationally expensive. Instead,

they have shared small parts of knowledge which were discovered from domain data

or which the system designer expected to positively affect performance. In this way,

they are computationally scalable and do not sacrifice the benefits of a modularised

architecture.

A further approach to considering NLG decisions interdependently are systems

like SPaRKy (Walker et al. 2007). Here sentence generation takes an overgeneration

and ranking approach. In the first step, a randomised set of alternative sentence

plans are generated. In the second step, these are ranked according to a boosting

score that predicts user ratings of the outputs. Joint decision-making is possible in

that an n-best list of alternatives is passed between modules, which can each be

considered in the next module.

Here we will follow the direction of sharing knowledge across generation subtasks

so as to provide a richer context for decision-making to our learning agent. In this

way, the full utterance context can be considered rather than local context alone.

2.3 Situated NLG

Related work on situated NLG has explored a range of different methods. Denis

(2010) presents a rule-based approach to GIVE which works by systematically

eliminating distractor buttons until a unique reference to a target object is possible.

To achieve this, he makes use of the fact that referring expressions are not only

determined by context but also modify it. Benotti and Denis (2011b) present an

approach to GIVE based on corpus-based selection, which maps situations in the

GIVE environment directly to human descriptions. This technique works with few

or no annotations and therefore greatly reduces development costs. Also training

from unannotated data, Chen, Kim and Mooney (2010) present a system that learns

to interpret and generate language based on pairs of action sequences and textual

descriptions of RoboCup games. A particular challenge is that the action sequences

are ambiguous in that not every action is described in the corresponding text. The

authors’ best performing system in terms of surface realisation was optimised for

precision by comparing generated system output against human-authored text. For

content selection, the authors train their generator using a variant of the expectation-

maximization (EM) algorithm to estimate the events that are worth including in a

textual description.

Using supervised learning for situated generation, Stoia et al. (2006) use decision

trees to learn content selection rules for noun phrases in a situated generation
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setting. Similarly, Dale and Viethen (2009) and Viethen, Dale and Guhe (2011) use

decision trees to learn content selection rules for referring expressions in spatial

settings. Garoufi and Koller (2011a) use a planning approach to make a first set

of content selection decisions and then apply a maximum entropy model to resolve

the remaining nondeterminacy with respect to surface realisation. All of these

approaches have demonstrated that supervised learning is attractive for learning

behaviour from a labelled corpus, discovering interdependencies between choices

and performing decision-making based on human behaviour. In contrast, based on

the principle of assigning delayed rewards for a sequence of actions, RL is typically

well suited for optimising sequential decision-making problems such as situated

interaction. An example application is an NLG system that needs to generate an

effective and coherent sequence of instructions. This principle is discussed in detail

in Section 4.

3 Situated NLG in the GIVE environment

Generation in situated settings typically requires the NLG system to adapt to

changing circumstances in its physical environment, such as new objects and spatial

configurations. In addition, we assume interaction with a constantly moving user so

that the system needs to monitor their progress and keep them on track.

3.1 Generating Instructions in Virtual Environments (GIVE)

The GIVE task involves two participants, one instruction giver and another instruc-

tion follower, who engage in a ‘treasure hunt’ through a set of virtual worlds. The

task can be won by finding and unlocking a safe and obtaining a trophy from it.

It can be lost by stepping onto one of a number of red tiles and activating an

alarm. To solve the task, the instruction giver has to guide the instruction follower

in navigating through a world, and pressing a particular sequence of buttons. The

sequence of buttons corresponds to a code that will, if pressed in the correct order,

unlock the safe and release the trophy. There are also a number of distractor buttons

present, though, which either have no effect or trigger an alarm. In the original GIVE

task (Byron et al. 2009; Koller et al. 2010), the role of the instruction giver is taken

by an NLG system of the kind that we will develop in the remainder of this paper.

The NLG system’s action set includes navigation instructions such as moving to the

left/right, going straight or leaving the room. The system also generates referring

expressions, which need to be accurate in order to distinguish intended referents

from their distractors. To do this, the virtual worlds also contain a set of landmarks,

such as plants or furniture, which can be used as points of reference. The instruction

follower, or user, is restricted to a number of non-verbal actions. They can either

move to the front, left, right or back, or press a button. They can, in addition, ask

for help by pressing a help button or cancel the game by pressing escape. Note that

even though the user’s actions are confined to non-verbal behaviour, the task still

resembles a dialogue setting in that the user is able to react to any instruction that



Hierarchical reinforcement learning for situated NLG 7

Utterance
string=turn left and press the blue button left of the yellow, time=20:54:55

Utterance type
content=orientation,RE [straight, path, direction, destination, confirm, stop, repair]
navigation level=low [high]

Referring Expression
within dialogue history=true [false], within field of vision=true [false]
referent colour mentioned=true [false] , distractor colour mentioned=true [false]
mention distractor=true [false] , landmark mentioned=false [true]
spatial relation=lateral projection [none, distance, middle, proximal, functional
control, functional containment, non projection axial, frontal projection, vertical
projection]

Environment
number of landmarks=0 [1, 2, 3, more], number of distractors=1 [0, 2, 3, more]
discriminative colour referent=false [true], discriminative colour distractor=false

[true]

User
user position=on track [off track],
user reaction=perform desired action [perform undesired action, wait, request help]

Fig. 2. Sample annotation for a navigation instruction followed by a referring expression.

Alternative annotation values are given in square brackets behind the actual values. This set

of (possible) annotations defines our annotation scheme for the GIVE-2 corpus.

the system produces. Figure 3 shows excerpts from three interactions between two

humans during the GIVE task.

3.1.1 The GIVE-2 corpus

The GIVE-2 corpus (Gargett et al. 2010) is a collection of (sixty-three English and

forty-five German) human–human dialogues on the GIVE task that was collected

in a Wizard-of-Oz study to shed light on the strategies that human instruction

givers employ when giving navigation instructions and referring expressions to their

interlocutors. Participants in this scenario played three games in three different

virtual worlds. After the first game, they switched roles for the last two games.

To facilitate the automatic analysis of the GIVE corpus dialogues and to provide

our learning agent with information about the target domain, we annotated the

English set of dialogues according to the annotation scheme shown with an example

annotation in Figure 2. The annotations1 concern the following four areas: (1)

the utterance itself and its type, (2) the semantic choices of a referring expression,

where the set of spatial relations is taken from Bateman et al. (2010), (3) the spatial

environment, i.e. the situational setting in which an instruction is produced and (4)

the user’s reaction to an instruction. The user reaction feature is key and will play

an important role in training the learning agent in Section 5.2.

1 Available from http://www.macs.hw.ac.uk/ nsd1/Researchfiles/annotations.zip
(accessed August 31, 2013).
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Fig. 3. (Colour online) Examples of instructions that can be categorised as high-level, low-level

and mixed instructions (all describing the same situation) taken from the GIVE corpus. The

arrows on the maps on the left show the route segment that is described in each instruction.

The instruction follower’s initial position is indicated by the person in the lower-left room.

3.1.2 Instruction types in the human data

As an example of the task our NLG system faces, consider the instruction sequences

of the GIVE corpus in Figure 3. All of these examples refer to the same situation, but

instruction givers still employ a range of fundamentally different instruction giving

strategies. Instructions differ in length, abstraction and semantic choices. We group

them here into three types. Each type is characterised by a number of qualitative

features discussed in the following.

The first instruction sequence guides the user by a high-level navigation strategy. It

makes explicit reference to the dialogue history and to locations that the instruction

follower has visited previously and is expected to remember (including how to get

there). This strategy makes use of the structure of the environment by referring to

doors, paths and rooms.
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The second instruction sequence, in contrast, relies exclusively on guiding the

instruction follower by low-level navigation. Every required action is explicitly

verbalised and there is no reference to the environmental structure or dialogue

history. High-level instructions represent contractions of low-level instructions.

The third instruction sequence, finally, lies in between the two extremes. While

it takes advantage of the environmental structure and visual information, there

are no references to the dialogue history. We call this mode of instruction giving

mixed.

To design an NLG system that can solve the GIVE task, we will be concerned

mainly with the generation of the following six instruction types:

• Destination Instructions aim to guide a user to their next subgoal in the virtual

world, mainly by specifying the goal, rather than the way to the destination.

An example is Head back to the room with the plant.

• Direction Instructions indicate changes of direction to the user, such as Turn

left at the door.

• Orientation Instructions instruct the user to change their orientation. An

example is Turn 180 degrees left.

• Path Instructions serve to guide the user along a certain path, as in Follow

the corridor until you reach a door.

• Instructions to go straight aim to guide the user to go straight. An example

is Keep going straight.

• Referring Expressions are instructions to press a particular button, for ex-

ample, Push the red button to the left of the yellow.

The hierarchy of learning agents will make decisions at different levels of

granularity to contribute to the generation of these six instruction types. While

the agent’s knowledge is partially informed by the annotations of the GIVE corpus,

it is also informed by linguistic knowledge that was obtained through manual

analysis of the domain. Note however that the route plan is provided by the GIVE

client,2 which informs the NLG system about the next (sub-)goal and about how to

get there. It also provides information about the user’s location, spatial objects and

visibility. In the end, though, the learning agent has to decide how much detail to

provide to the user and whether to realise route plans step by step or all at once.

4 A hierarchical optimisation approach for language generation

A central characteristic of RL-based approaches is that they typically specify abstract

system goals, such as help the user set up the broadband connection without using

words they do not understand and without unnecessary descriptions (Janarthanam

and Lemon 2010), or help the user find a restaurant they like without presenting every

possible option to them, but still give them a good overview of the choices (Rieser

et al. 2010). The system is always just told what to achieve, but not how to achieve

it. It is then the learning agent’s objective to try different strategies and discover the

2 http://code.google.com/p/give2/downloads/list (accessed August 31, 2013).
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best. For our situated NLG task, we could say that we wish the agent to guide the

user to the nearest navigation (sub-)goal, e.g. the next button to press so that they

get there as quickly as possible and obtain the trophy with as few problems and

confusions as possible.

4.1 Reinforcement learning

The goal of an RL agent is to map situations to actions in a goal-directed manner

so as to maximise a long-term, numeric reward signal. The computational model

underlying RL agents is the Markov Decision Process, or MDP (Sutton and Barto

1998). A standard MDP can be defined formally as a four-tuple 〈S, A, T , R〉.

• S = {s0, s1, s2, . . . , sN} is a set of states that summarise all information, present

and past, that the agent needs in order to behave in its world of situations. It

includes, for example, the status of the environment, such as present objects

and buttons, the user’s state of confusion or the next navigation action to

execute. States must allow the agent to monitor its progress in the learning

task at any time and observe the effects of its actions. Thus, whenever the

agent takes an action a in state s at time step t, the updated state st+1 = s′

(at time step t + 1) should represent the action’s effect on the environment.

In this way, the agent is able to learn from its experience.

• A = {a0, a1, a2, . . . , aM} is the set of actions available to the agent. It defines

the agent’s behavioural potential and forms the basis for decision-making

and the principle of learning from trial and error. Example actions include

generating instructions such as turn left, mentioning the colour of a referent

or telling the user to stop.

• T is a probabilistic state transition function indicating the next state s′ from

the current state s and the action a. It represents the way in which an action

changes the current state of the world. T is represented by a conditional

probability distribution P (s′|s, a) satisfying
∑

s′∈S P (s′|s, a) = 1, ∀(s, a). For

example, if the user has to press a particular button, this will be represented

with probability p for the state transition to the state with the right button

pressed, and probability 1 − p for transitioning to a different state due to a

wrong action (such as a wrong button pressed).

• R is a reward function R(s′|s, a) specifying a numeric reward that an agent

receives for taking action a in state s. Rewards allow the agent to evaluate

its decision-making process. The reward at time t + 1 is also denoted by r′.

Rewards provide the primary feedback mechanism for the agent.

The dynamics of an MDP can be described as follows. At the beginning of an

interaction between the agent and the environment, when the time step t = 0, the

agent receives a representation of the current situation, called the state st ∈ S . It

needs to perform an action at ∈ A. As a result, the agent will receive a reward

rt+1 ∈ R and observe the next state st+1 ∈ S , which is the updated environment

state. This process can be seen as a finite sequence of states, actions and rewards

{s0, a0, r1, s1, a1, . . . , rt−1, st}. Any mapping from states to actions is called a policy.



Hierarchical reinforcement learning for situated NLG 11

Ultimately, the agent’s goal is to learn an optimal policy denoted by π∗, a mapping

from every state s to an action a that will yield the highest expected return. An

optimal policy can be found according to

π∗(s) = arg max
a∈A

Q∗(s, a) (1)

where Q∗ is the function of expected rewards for executing action a in state s

and then following π∗. For learning single-task NLG policies using flat RL, such a

function can be found using algorithms such as SARSA (Sutton 1996) or Q-Learning

(Watkins 1989), among others. See Sutton and Barto (1998) or Szepesvari (2010) for

a detailed account of the RL paradigm.

4.2 Hierarchical reinforcement learning

Reinforcement learning systems with large state spaces are affected by a problem

referred to as the curse of dimensionality, the fact that state spaces grow exponentially

with the number of state variables they take into account. When the state space

grows too large, the agent will not be able to find an optimal policy for a task, which

affects its practical application in large systems (such as many real-world systems

or the one we are designing for GIVE). The best one can do in such situations

is to provide an approximate solution, such as a divide-and-conquer approach to

optimisation. For this we divide the generation task into several subtasks, which

have smaller state spaces and can therefore find a solution more easily. In other

words, we learn a hierarchy of policies for generation subtasks, rather than learning

one single policy for the whole task. An alternative way of dealing with the curse of

dimensionality is to use function approximation techniques (Henderson, Lemon, and

Georgila 2005; Jurcı́cek, Thompson and Young 2011; Pietquin et al. 2011), which

are not guaranteed to converge to optimal policies, though.

Any flat learning agent that is characterised by a single MDP can be decomposed

into a set of subtasks Mi
j , where i and j are indexes that uniquely identify each

subtask in a hierarchy of subtasks such thatM = {M0
0 ,M

1
0 ,M

1
1 ,M

1
2 , . . . ,M

X
Y }. These

indexes do not specify the order of execution of subtasks, because the order of

execution is subject to learning. Each subtask, or agent in the hierarchy, is defined

as a Semi-Markov Decision Process (or SMDP) Mi
j = 〈Si

j , A
i
j , T

i
j , R

i
j〉, in which Si

j =

{s0, s1, s2, . . . , sN} is a set of states of subtask Mi
j . A

i
j = {a0, a1, a2, . . . , aM} is a set of

actions of subtask Mi
j that can be either primitive or composite. Primitive actions

are single-step actions as in an MDP and receive single rewards. Composite actions

are temporally extended actions that correspond to other subtasks in the hierarchy

and are children of the current, their parent, subtask, such as referring expression

generation. Composite actions receive cumulative rewards.

The execution of a composite action, or subtask, takes a variable number of time

steps τ to complete, which is characteristic of an SMDP model (and distinguishes

it from an MDP). The parent SMDP of a subtask passes control down to its child

subtask and then remains in its current state st until control is transferred back to

it, i.e. until its child subtask has terminated execution. It then makes a transition to

the next state s′. T i
j is a probabilistic state transition function of subtask Mi

j , and Ri
j
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is a reward function Ri
j(s
′, τ|s, a) for subtask Mi

j that specifies the reward that the

agent receives for taking action a ∈ Ai
j (lasting τ time steps) and making a transition

from state st to state st+τ ∈ Si
j . Discounted cumulative rewards of composite actions

are computed according to rt+1 + γrt+2 + γ2rt+3 + · · · + γτ−1rt+τ, where γ is called

the discount rate, a parameter which is 0 ≤ γ ≤ 1 and indicates the relevance of

future rewards in relation to immediate rewards. As γ approaches 1, both immediate

and future rewards will be increasingly equally valuable. The equation for optimal

hierarchical action selection is

π∗
i
j(s) = arg max

a∈A
Q∗

i
j(s, a), (2)

where Q∗ij(s, a) specifies the expected cumulative reward for executing action a in

state s and then following π∗ij . For learning hierarchical NLG policies, we use the

HSMQ-Learning algorithm (Dietterich 2000), a hierarchical version of Q-Learning.

During policy learning, Q-values are updated according to the following update rule

(Sutton and Barto, 1998: 37):

NewEstimate← OldEstimate + StepSize [Target− OldEstimate]. (3)

Using the above notation, this corresponds to

Qi
j(s, a)← Qi

j(s, a) + α
[
r + γτ max

a′
Qi

j(s
′, a′)− Qi

j(s, a)
]

(4)

where α is a step-size parameter. It indicates the learning rate that decays from 1 to 0,

for example as in α = 1/(1+visits(s, a)), where visits(s, a) corresponds to the number

of times that the state-action pair (s, a) has been visited previous to time step t. Please

see Cuayáhuitl (2009: 92)) for its application to spoken dialogue management, and

Dethlefs and Cuayáhuitl (2010) for an application to NLG besides this journal.

5 Training and learning setting

Section 4 has provided an abstract description of hierarchical RL, which we will

now apply to situated NLG. We will first design the state and action space for our

hierarchical reinforcement learner for the GIVE task. This will be a linguistically

informed knowledge engineering task. We will then define a simulated environment

and reward function and train the hierarchical learner in a set of training navigation

worlds.

5.1 The hierarchy of learning agents interacting with the environment

This section will provide details of the knowledge engineering involved in applying

hierarchical RL to GIVE. We first explain how the learning agent interacts with its

environment during training (and execution) and then define a hierarchy of learning

agents specifically for GIVE.
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Agent’s behaviour

Fig. 4. (Colour online) Illustration of the interaction between the learning agent (upper box)

and its learning environment (lower box). Within the learning environment, three types of

information are considered: (1) the knowledge base of the agent, (2) the virtual world and

(3) information about the user such as the user’s knowledge base and behaviour.

5.1.1 Interaction with the environment

An illustration of the agent–environment interaction, as required during learning

or execution of the learning agent, is shown in Figure 4. The agent’s behaviour,

represented by the upper box, is following a policy π∗, which indicates the best

action for a given state at time t, amt = π∗(smt ). Here m stands for machine. This

action is passed to the generation environment, where its effects on the user and the

virtual world are observed and represented in the updated state smt+1. Interaction with

the generation environment is the main contributor to the agent’s learning process.

It contains three types of information: information concerning the knowledge base,

the virtual world and the user. The agent’s knowledge base contains all knowledge

held by the agent about the virtual world, the user and the current generation state

and history. From here, knowledge is also distributed to different learning agents

and enters their state representation. The virtual world contains objects of the world,

such as buttons and objects as well as the user’s concrete position and angle in the

world. During training, this knowledge is estimated from the simulated environment

(see Section 5.2), during execution it is taken directly from the GIVE environment

and planner.3 Knowledge of the virtual world is passed to the agent’s knowledge

base as the world state wt so that it can be taken into account for action selection.

In return, the current agent state smt is passed back to the virtual world so that it can

be taken into account for updates to the world. The user’s knowledge base contains

all knowledge about the virtual world that the user has gained. For example, if the

user has pressed a certain button or visited a particular room previously, we assume

that the user is now familiar with these objects. Such user knowledge can only be

estimated since we can never be certain about the user’s knowledge. The simulated

user behaviour is the agent’s main way of learning about the user’s current state, such

3 http://code.google.com/p/give2/downloads/list (accessed September 3, 2013).
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Fig. 5. (Colour online) Hierarchy of learning agents for content selection (solid lines), utterance

planning (dashed lines) and surface realisation (dotted lines) of navigation and referring

expression generation. The arrows indicate the flow of control as it is passed down from

parents to child agents. The agents are indexed by their policies π0
0 . . . π

3
5 for SMDPs M0

0 . . .M
3
5 .

as whether the user is confused or not, and to evaluate its own action policies. User

behaviour is classified into four actions: perform desired action, perform undesired

action, wait and request help. Since the user cannot communicate verbally in GIVE,

this limited action repository provides a sufficient notion of the user’s state. The user

state sut is passed to the action simulator from the user’s knowledge base so that

actions can be estimated based on the user’s knowledge. User actions aut produced

by the simulator (or the actual user during a game) are communicated back to the

knowledge base as updates.

5.1.2 The hierarchy of learning agents

As a more concrete description of how knowledge and actions are passed between

agents, Figure 5 shows the hierarchy of learning agents that we designed for the

GIVE task. It comprises fourteen different agents whose policies can be roughly

categorised as tasks of content selection (π0
0 , π

1
0 , π

1
1 , π

2
0 , π

2
2 , π

2
3 and π2

4), utterance

planning (UP) (π2
1) and surface realisation (π3

0...5). Note that information is always

passed between learning agents in the form of state updates that follow user or

system actions.

Content selection is responsible for all semantic decisions made by the learning

agent, such as whether to choose a high- or low-level navigation strategy, whether

to mention a referent’s colour or not etc. Utterance planning focuses on how to

organise semantic content into a distinct set of messages. For example, should a

set of instructions be aggregated or presented separately, what thematic structure

should be used etc. Surface realisation finally chooses a realisation for the utterance

from a set of candidates (Section 5.3) for our six instruction types. For a joint

optimisation, these fourteen agents would share certain knowledge variables among

them. This shared knowledge is predefined by the system designer and gives us
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Fig. 6. (Colour online) This hierarchy of state–action sequences shows the high-level dynamics

of states, actions and transitions for an example generation episode for a high-level navigation

instruction. The empty circles represent generation states (s0 = initial state, s13 = final goal

state), the dark (blue) circles represent composite actions, the light (green) circles represent

primitive actions and the dotted arrows represent state transitions across learning agents. The

low-level details of this example are given in Appendix B.

the opportunity to optimise subtasks jointly rather than in isolation. It allows the

learning agents to consider different types of decisions interdependently that affect

the trade-off between detail and efficiency in situated interaction. At the same time,

it preserves the benefits of a modular architecture.

Generation always begins with the root agent M0
0 (indexed by its policy π0

0) which

has the option of taking primitive actions or invoke composite actions of reference

or navigation. In the latter case, control is passed to a child subtask, agent M1
0 for

reference or agent M1
1 for navigation, respectively. The flow of control is indicated

by the arrows in Figure 5. During the process of generating an utterance, control

is passed between agents, such as from parent to child when a subtask is called,

and from child back to parent once a subtask has terminated. Whenever control is

transferred back to the root agent, an episode has been completed and execution

terminates. One episode (from state s0 to state sT ) corresponds to one utterance.

Figure 6 illustrates the passing of control between agents during a generation

episode. In this case a destination instruction is generated, which uses a high-level

navigation strategy. In addition, an utterance plan is needed which specifies how the

instruction fits in with other instructions.

While Figure 6 only provides a high-level example, please see Appendix B for all

details and individual actions and state transitions. The complete state–action space

of the hierarchical learning agent has a size of
∑

i,j |Si
j × Ai

j | =
∑

i,j[ (
∏

k(i,j) |fk(i,j) |)×
|Ai

j |] = 1, 480, 869.4 Here (i, j) represents an agent in the hierarchy, fk(i,j) represents

4 The detailed calculation involves computing the sum over all possible state–action pairs
per agent. For the agents specified in Appendix A, this is (2 × 2 × 5 × 5 × 3 × 5) + (2
× 2 × 3 × 5 × 2 × 2 × 2 × 2 × 5) + (2 × 2 × 2 × 2 × 2 × 2 × 2 × 3 × 5 × 2 × 2 ×
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the feature set of agent (i, j) and k refers to features k in agent (i, j). In contrast,

a flat agent using the same states and actions would have the (very large) state–

action space of |S × A| = (
∏

k |fk|) × |A| = 3 × 1057, indicating the advantage of

using a hierarchical decomposition for more scalable decision-making. The complete

state–action space of the hierarchical agent (and the pre-specified shared knowledge

variables for a joint optimisation) are given in Appendix A.

5.2 The simulated environment

Typically, an RL agent needs to be exposed to a large number of interactions

during training to learn an optimal policy. Since it is impractical to use real

users for these interactions, we use a simulated environment instead and estimate

it from our annotations of the GIVE corpus. Our goal is to simulate different

spatial surroundings in which the agent can try a multitude of action strategies in

order to learn an optimal one by trial and error. The effect of each action will

be simulated in the form of a user reaction from among Y = {perform desired

action, perform undesired action, wait, request help}. Users in our training data were

generally cooperative so that a good system action strategy always results in the

user performing the desired action. All other user reactions indicate a non-optimal

system action.

Our simulated environment is based on two Naive Bayes classifiers, one for

simulating user reactions Y (the classes) to referring expressions and another for

simulating user reactions to navigation instructions. We use two separate classifiers

rather than one because different feature sets are relevant for each system action

type. For simulating user reactions to referring expressions, we use the following

features X:

• discriminating colour referent x0 = {true, false}, indicates whether the refer-

ent’s colour is uniquely identifying or not.

• discriminating colour distractor x1 = {true, false}, indicates whether any of

the distractor’s colours are uniquely identifying or not.

• number of distractors x2 = {0, 1, 2, 3, more}, indicates the number of

distractors present, if any.

• number of landmarks x3 = {0, 1, 2, 3, more}, indicates the number of

landmarks present, if any.

• is visible and near x4 = {true, false}, indicates whether the referent button is

near and visible to the user (the conditions to press a button).

• referent colour mentioned x5 = {true, false}, indicates whether the system’s

instruction included the colour of the referent.

2 × 2 × 2 × 14) + (2 × 2 × 2 × 4 × 4 × 5 × 9 × 3 × 18) + (3 × 2 × 2 × 3 × 2 × 5
× 2 × 2 × 3 × 2 × 5) + (2 × 3 × 2 × 2 × 2 × 3 × 2 × 3 × 6) + (3 × 2 × 2 × 2 × 4
× 2 × 2 × 4) + (4 × 7 × 4 × 8 × 3 × 19) + (3 × 5 × 4 × 7 × 3 × 15) + (5 × 4 × 3
× 3 × 9) + (5 × 7 × 7 × 7 × 3 × 23) + (6 × 5 × 5 × 3 × 13) + (2 × 2 × 3 × 4 × 2
× 5 × 2 × 2 × 3 × 10) + (2 × 2 × 2 × 3 × 3), in the order in which the agents appear
in Appendix A. In the non-hierarchical RL case, numbers have to be multiplied instead of
summed because no hierarchical decomposition applies.
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Fig. 7. (Colour online) Illustration of the training worlds that are the basis of the simulated

environment. All worlds require skills for navigation and disambiguation at a medium-level

of difficulty.

• within dialogue history x6 = {true, false}, indicates whether the button is

already in the dialogue history, e.g. because it has been pressed before.

For simulating user reactions to navigation instructions, we use the following features

Z:

• number of landmarks z0 = {0, 1, 2, 3, more}, indicates the number of

landmarks present, if any.

• is visible and near z1 = {true, false}, indicates whether the button is visible

and near (or whether we need to navigate further towards it).

• navigation level z2 = {high-level, low-level}, indicates whether the system’s

instruction was a high- or low-level type instruction.

• navigation content z3 = {destination, direction, orientation, path, straight},
indicates the type of navigation instruction generated.

• within dialogue history z4 = {true, false}, indicates whether the next target (a

button, room or other object) is already in the dialogue history.

Using these feature sets, we predict user reactions from our annotations of the

GIVE corpus by sampling from the distribution P (Y |X) for referring expressions,

and by sampling from P (Y |Z) for navigation instructions. All features describing the

environment, such as the number of buttons or landmarks present, were simulated

from unigram language models estimated from the GIVE corpus. These features

were simulated with the same distribution as they occur in the GIVE corpus, but

deliberately so that the agent would encounter as many different settings as possible

and not be restricted to the GIVE worlds5 shown in Figure 7.

To train our classifiers, we used the Weka toolkit (Witten and Frank 2005),6 and

evaluated our classifiers in a ten-fold cross-validation. For referring expressions, our

classifier achieved an accuracy of 78% and for navigation instructions an accuracy

of 86%, yielding an average of 82%. As a baseline, a ZeroR (majority class) classifier

yields an average accuracy of 69% by always voting for the most likely option.

5 The worlds of the GIVE corpus, used for training, can be downloaded from
http://www.give-challenge.org/research/page.php?id=software (accessed April
22, 2013).

6 www.cs.waikato.ac.nz/ml/weka/ (accessed September 1, 2013).
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5.3 A three-dimensional reward function

We use a reward function with three dimensions for optimisation: (1) first for

achieving maximal user satisfaction, (2) second for rewarding human-like surface

realisation decisions and (3) third for optimising the proportion of alignment and

variation in system utterances. Each of these will be discussed in turn.

5.3.1 Dimension 1: user satisfaction

The first dimension aims to maximise user satisfaction. According to the PARADISE

framework (Walker et al. 1997; Walker, Kamm, and Litman 2000), the performance

of a (spoken) dialogue system can be modelled as a weighted function of task success

and dialogue cost measures (e.g. number of turns, interaction time etc.). We argue

that PARADISE is also useful to assess the performance of an interactive NLG

system, since both objective measures (e.g. task success) and subjective measures (e.g.

ease of understanding) seem equally relevant for NLG systems in situated contexts.

To identify the strongest predictors of user satisfaction (US) in situated dialogue and

NLG systems, we performed an analysis of subjective and objective dialogue metrics

collected with an indoor wayfinding system, based on PARADISE (Dethlefs et al.

2010). We used a graded task success (GTS) metric (Tullis and Albert 2008), rather

than a binary (success=1/failure=0) metric, so as to be more sensitive to problems

that users experienced during navigation. This metric assigns different numerical

values depending on the problems that users encountered. It is defined as follows,

where FTL means ‘finding the target location’:

GTS =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for FTL without problems

2/3 for FTL with small problems

1/3 for FTL with severe problems

0 other.

In order to identify the relative contribution that different factors have on the

variance found in user satisfaction scores, we performed a standard multiple linear

regression analysis on our data. Results revealed that the metrics ‘user turns’ and

‘graded task success’ were the only predictors of user satisfaction at p < 0.05. The

binary task success metric was not significant (p < 0.39). Based on this, we ran a

second analysis using only those variables that were significant predictors in the first

regression analysis, i.e. graded task success and the number of user turns (which are

negatively correlated). We obtained the following performance function:

Performance = 0.38N(GTS)− 0.87N(UT ) (5)

where 0.38 is a weight on the normalised value of GTS, and 0.87 is a weight on the

normalised value of the number of user turns (UT).7 Using this reward function,

our learning agent is rewarded for short interactions (as few user turns as possible)

7 We normalised all values to account for the fact that they can be measured on different
scales according to N(x) = x−x̄

σx
, where σx corresponds to the standard deviation of x.
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at maximal (graded) task success. User turns correspond to user reactions following

system instructions. These are estimated from the simulated environment. If the user

reacts positively (carries out the instructions), task success is rated with 1; if they

hesitate once, it is 2/3; if they hesitate more than once, it is 1/3 and if they get

lost (carry out a wrong action), it is 0. In this way the agent receives the highest

rewards for the most efficient utterance followed by a positive user reaction. This

reward function is used by all agents M0
0 . . .M

2
4 dealing with content selection and

utterance planning. Rewards are assigned after each system instruction and the

user’s reaction (i.e. whenever an agent of M0
0 . . .M

2
4 has reached its goal state). The

learning algorithm propagates this reward back to all agents that contributed to the

decisions that led to the generated instruction.

5.3.2 Dimension 2: naturalness

The second dimension focuses on surface realisation performed by agents M3
0...5.

We have decided to base surface realisation decisions based on probabilities of

surface forms as they occur in the GIVE corpus and use these probabilities as

rewards to inform the agent’s learning process. While in this particular case we use

the Bayesian Networks to represent probabilistic generation spaces per instruction

type (for destination, direction, orientation, path, ‘straight’ and referring expression),

nothing depends on the model chosen. Any surface realiser that is able to return

a probability given a surface form would be suitable, including n-gram language

models. Please see Dethlefs and Cuayáhuitl (2011) for the details of how our Bayesian

Networks were trained and Dethlefs and Cuayáhuitl (2012) for a comparison with

other graphical models.

For generating natural surface forms, the agent’s rewards will be based on the

probability of the word sequence it has generated. This means that having generated

word sequence w0 . . . wn, it will receive the probabilistic reward Pr(w0...wn). In

Bayesian Networks, this reward can be obtained through probabilistic inference,

according to

Surface String Probability = Pr(w1 . . . wn|e) (6)

where w1 . . . wn refer to individual words, and e can correspond to non-linguistic

context derived from the interaction history. For example, if we wanted to com-

pute the probability of the sentence go to the sofa, this can be expressed as

Pr(verb=go, prep=to, relatum=the sofa|e).

5.3.3 Dimension 3: balancing alignment and variation

The third dimension of the reward function aims to balance the proportion of

alignment and variation in a natural and human-like fashion. It is used by the

surface realisation agents M3
0 . . .M

3
5 . From the human GIVE data, it was observed

that instruction givers tend to self-align with their own utterances and vary them

in an about equal fashion. An example of this is provided in Table 1. The aligned

phrases here are shown in bold face and the number of instructions intervening

between aligned instructions are given in parentheses. In the first example, the
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Table 1. Examples of (self-)alignment in the GIVE corpus. In the first example, the
instruction giver uses the phrase you want with high frequency and across instructions.
In the second example, the instruction giver uses exclusively the verbs click and hit
in their referring expressions. The number of intervening instructions are shown in
parentheses behind each instruction

Examples of alignment in the GIVE corpus

(1) Lexical alignment across instruction types

. . . (15 instructions) . . .

great, you want to press that green button . . . (1 instruction) . . .

you want to press the yellow on the wall to the left first . . . (3 instructions) . . .

you wanna get that red button . . . (1 instruction) . . .

now you want to get the blue button . . . (9 instructions) . . .

you want to exit the room you are in . . . (17 instructions) . . .

you want to keep going straight but to the left . . . (25 instructions) . . .

okay you want to take a left . . . (13 instructions) . . .

(2) Lexical alignment in referring expressions

ok, hit the blue button on the wall behind you . . . (11 instructions) . . .

click the green button . . . (1 instruction) . . .

click the yellow button on the wall

now click the red button directly behind you . . . (1 instruction) . . .

now hit the blue one directly next to the yellow one

ok, hit the other red button, closer to the opening . . . (4 instructions) . . .

hit the green button near the couch . . . (1 instruction) . . .

and hit the red button . . . (4 instructions) . . .

hit the yellow button . . . (7 instructions) . . .

instruction giver uses the phrase you want with high frequency and across instruction

types. The phrase per se has a rather low frequency in the corpus on the whole

(1.8% of all verbs). In the second example, the instruction giver produces referring

expressions almost exclusively using the verbs click (33.3% in this dialogue and 33%

in the entire corpus) and hit (66.6% in this dialogue, 6.6% in the corpus). We can

see that human instruction givers do not only self-align with their own utterances

but they also introduce a significant amount of variation, possibly to reduce the

repetitiveness of their utterances.

We will not investigate the question here of why variation (or alignment) occurs

in human discourse, but see Levelt (1989), Belz and Reiter (2006) and Foster

and Oberlander (2006) for some hypotheses. Rather we will take the stance

that if it occurs as ubiquitously as we have observed in our human data, then

it should be a part of the agent’s learning objectives. Therefore, we define a

constituent alignment score (CAS) which indicates the proportion between alignment

and variation for each constituent in the discourse. It is computed as CAS =

lexical tokens in discourse/total number of tokens, which yields a number in the

range of [0 . . . 1]. Please see Dethlefs and Cuayáhuitl (2010) for details of this

computation and its background. We would like our agent to generate utterances

so that the CAS for each utterance is as close to 0.5 as possible. To achieve this,

we assign each generated utterance a probabilistic reward sampled from a Gaussian
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distribution. In probability theory this has a probability density function defined as

f(x) = 1√
2πσ2

e
− (x−μ)2

2σ2 , where μ refers to the mean and σ2 refers to the variance. The

right-hand side of this equation is also commonly denoted asN(x|μ, σ2) so that the

probability density function that we use for the sampling of rewards can be defined

as

P (CAS) ≈N(CAS |μ, σ2) (7)

where in our case we used a mean, μ = 0.5, and a variance, σ = 0.2. A CAS score

in the range [0 . . . 1] indicates the proportion of alignment and variation.

5.3.4 Bringing all dimensions together

For the final experiments, we can bring all dimensions of the reward function

together by summing rewards whenever more than one applies.8 For example, at

the end of an utterance (upon reaching the goal state), usually the reward for the

Performance of the utterance will apply, the reward for the Surface String Probability

and the reward for Alignment Variation. Accordingly, the reward for the utterance

can be computed as

Reward = Performance + Surface String Probability + P (CAS). (8)

For all dimensions and agents, a reward of −1 is assigned for every action in the

hierarchy so as to prevent the agent from choosing actions multiple times and

entering into loops. For example, it could happen that an agent chooses an action

repeatedly that has yielded a positive reward in the past (such as choosing a surface

realisation for the verb), even though it does not change the state of the environment

anymore and instead fails to take other relevant actions (such as choosing a surface

realisation for the direction). A small negative reward for repeated actions that do

not change the state of the environment can therefore prevent such loops.

6 Evaluation

In this section, we will evaluate our hierarchical learning framework in both

simulation and a human evaluation study. We will focus particularly on a comparison

of a joint generation policy, with shared knowledge, and an isolated generation

policy. A brief comparison with state-of-the-art approaches for GIVE is also

provided.

6.1 Simulation-based evaluation

Using simulation, we have trained two policies, a joint policy and an isolated policy.

A qualitative analysis after 150 thousand training episodes reveals the following

8 This relies on the assumption that all rewards have equal weight with respect to the overall
performance. Experimentation with different weights are left for future work.
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Fig. 8. (Colour online) A comparison of average rewards attained by the joint policy, using

shared knowledge, and the isolated policy, using no shared knowledge, over time.

learnt behaviour. Figure 8 compares the average rewards (averaged over ten runs)

of (a) a jointly optimised policy, i.e. using shared knowledge, and (b) an isolated

policy, using no shared knowledge. We can see that a joint optimisation achieves

higher overall rewards over time. An absolute comparison of the average rewards

(rescaled from 0 to 1) of the last 1, 000 training episodes of each policy shows that

the joint behaviour improves the isolated behaviour by 34% (p < 0.0001).

The joint policy has learnt to prefer high-level navigation over low-level navigation,

but switch the navigation strategy when the user gets confused. It uniquely identifies

a referent button by preferring the use of a discriminating colour, and otherwise (if

neither the referent nor a distractor has a discriminating colour) use either a spatial

relation, a distractor or a landmark (in this order of preference). If a distractor is

used, the referent is located in relation to it, such as Press the yellow button beside the

blue. In addition, it will use composite presentations for at most two instructions (and

aggregate them) and incremental displays otherwise. It has learnt to use temporal

markers for more than three instructions. Finally, the agent has learnt to balance

the trade-offs of variation and alignment while still acting in accordance with the

language model.

Tables 2 and 3 show example interactions (from simulation) with the joint and

isolated policy, respectively. These dialogues illustrate the importance of graded

task success: while both users are successful in the end, the user of the jointly

optimised dialogue is likely to have a substantially higher user satisfaction than the

user interacting with the isolated system. We can also see that utterances in the

isolated case are on average longer and seem to balance efficient instruction-giving

and the user’s cognitive load less optimally than the joint policy.



Hierarchical reinforcement learning for situated NLG 23

Table 2. Sample dialogue using the jointly optimised policy. The system starts using a
high-level navigation strategy, and then switches to low-level as the user gets confused.
Eventually it switches back to high-level

No. Conversant Utterance

1. USR starts game: ‘How do I get to the trophy?’

2. SYS Go until the end of the hall and turn to the right.

3. USR hesitates (i.e. waits for more than four seconds)

4. SYS Turn 90oright, then go straight.

5. USR executes instructions

6. SYS Now go until the end of the corridor and turn left.

7. USR executes instructions

8. SYS Good! Now walk to the red button left of the blue.

9. USR executes instructions

10. SYS Click the red button.

11. USR performs desired action: presses red button

12. SYS Very good.

Table 3. Sample dialogue using the isolated policy. The agent prefers efficient
instruction-giving. It uses high-level navigation and aggregates utterances where
possible. In terms of repair, only the immediately preceding utterance is repaired

No. Conversant Utterance

1. USR starts game: ‘How do I get to the trophy?’

2. SYS Go to the end of the hall and then turn left.

3. USR hesitates (i.e. waits for more than four seconds)

4. SYS Turn 90oright, go straight and go down the corridor.

Then turn left.

5. USR turns right, requests help

6. SYS Go to the end of the hall and then turn left.

7. USR undesired action: turns left

8. SYS Wait! Go back, then straight and then follow the corridor.

9. USR executes instructions

10. SYS Very good. Now go to the red one left of the blue and

click the button.

11. USR undesired action: presses blue button

12. SYS No, not this one! I meant the other button. Click it.

13. USR hesitates (i.e. waits for more than four seconds)

14. SYS Click the red.

15. USR performs desired action

16. SYS Very good.

6.2 Task-based evaluation

In this section we compare our jointly optimised policy with a policy optimised in

isolation in a human evaluation study. We formulate the hypothesis that the sharing

of knowledge across generation subtasks can lead to more successful interactions

with fewer problems that are more positively perceived by human users.
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Table 4. Objective metrics that were logged during interactions

Objective Metric Description

Interaction efficiency

(O1) Elapsed time (mm:ss) How long was the interaction?

(O2) System turns How many system turns?

(O3) System words How many system words overall?

(O4) System words per turn How many system words per turn?

(O5) User turns How many user turns (help requests, hesitations)?

Interaction quality

(O6) User help requests How many user help requests?

(O7) User hesitations How many user hesitations?

(O8) User false actions (all) How many false user actions overall?

(O9) User false actions (navigation) How many false user navigation actions?

(O10) User false actions (REs) How many false user manipulations?

Task success

(O11) Binary task success Was the game won or lost?

(O12) Graded task success Was the game won without problems, with

small problems, with severe problems or lost?

6.2.1 Experimental methodology

We use objective and subjective metrics based on the PARADISE framework

(Walker et al. 1997) for evaluating dialogue systems to evaluate our systems for

the GIVE task. Table 4 gives an overview of the objective metrics that we use

to evaluate the two system versions, jointly optimised and optimised in isolation.

Under the category interaction efficiency, we find metrics such as the time that an

interaction took, the number of system turns and system words, and the number

of user turns (we count as user turns help requests or hesitations that last longer

than a pre-specified threshold of 4 seconds). Under the interaction quality category,

we count the number of user help requests and user hesitations (the sum of which

corresponds to the ‘user turns’ metric under interaction efficiency), the number of

false user actions overall, the number of false user navigation actions and the number

of false user manipulation actions (i.e. false button presses). The ‘false user actions

overall’ metric corresponds to the sum of false navigation and manipulation actions.

Finally, under the category task success, we distinguish average binary task success

(won or lost) from average GTS which penalises task difficulty in different ways, as

defined in Section 5.3.1.

Binary task success is always 1 if a game was won (regardless of the number of

problems) and 0 if it was lost. For graded task success, we assume that every user

hesitation or help request indicates a problem, and assign the values of 2/3 (small

problems) for more than five user turns, 1/3 (severe problems) for more than ten

user turns and 0 for a lost game. The objective metrics were designed based on

PARADISE, but tailored specifically to our scenario, so as to measure the success

of instructions in a situated interaction scenario. Results of the objective metrics

were induced automatically from log files.
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Table 5. Subjective metrics and the questions that were asked to obtain them

Subjective etric Question

(Q1) Easy to understand Was it easy to understand the system?

(Q2) Task easy Was it easy to find the trophy?

(Q3) Interaction pace Was the speed of the interaction okay?

(Q4) What to do Did you know at each moment what to do?

(Q5) Expected behaviour Did the system work as you expected it to?

(Q6) Future use Would you use this system in the future?

(Q7) Appropriate help Did the system help you appropriately when you needed it?

(Q8) Enjoy game Did you enjoy the game?

(Q9) Recommend to friend Would you recommend the system to a friend?

(Q10) Naturalness Was the language of the system natural (non-robotic)?

Table 5 shows the subjective metrics we use to evaluate the user satisfaction of our

two systems. While questions Q1–Q6 are taken almost directly from PARADISE,

questions Q7–Q10 were included to test some specifics of our situated NLG scenario.

These metrics were obtained through questionnaires that participants were asked to

fill after each game they played.

6.2.2 Experimental setup

Setting and participants. We compare two systems for the GIVE task in a human

evaluation study involving nineteen participants: 79% (fifteen out of nineteen)

females and 21% (four out of nineteen) males, with an average age of 24.5 years.9

The two systems to be compared generated instructions for the GIVE task in three

different worlds, which were chosen to be different from the training worlds, in

order to assess the generalisability of our learnt policies. We thus used the hierarchy

of policies that was trained in the training worlds and evaluated them in the

evaluation worlds (rather than training a separate hierarchy of policies specifically

for the evaluation worlds). The learnt NLG policy was therefore environment-

independent. Future work can in addition investigate how policies can be adapted

during interactions via online learning.

In the evaluation, one system used a jointly optimised policy, and the other system

used a policy that was optimised in isolation. Participants were asked to play three

games. They were chosen so as to ensure that each participant played with at least

one jointly optimised system and one system optimised in isolation. Apart from this

condition, systems were chosen randomly from a uniform distribution.

9 While we cannot exclude the possibility that the strong gender bias had an impact on
our results, both GIVE challenges were faced with a similar situation. GIVE-2 had 79%
of male participants, while GIVE-2.5 was slightly more balanced with 58%. Despite the
gender bias found in both evaluations, no significant effect on task success or the subjective
metrics was found in either evaluation.
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Fig. 9. (Colour online) Illustration of the evaluation worlds. World 1 is most similar to the

training worlds in that it requires navigation and disambiguation skills at a medium level

of difficulty. World 2 is focused on referring expression generation and World 3 on complex

navigation.

Evaluation worlds. For the human evaluation, we used the virtual worlds from

the official GIVE challenge 2.510 of 2011 (Striegnitz et al. 2011). They are shown in

Figure 9. While the main skills required in the training worlds (cf. Figure 7) were

navigation and disambiguation of a medium level of complexity, the evaluation

worlds require a range of different skills. While evaluation world 1 was designed to

be similar to the training worlds, evaluation world 2 focuses on referring expressions.

A large number of same-coloured buttons are located close to each other in different

spatial arrangements so that disambiguation becomes a challenge. Evaluation world

3 requires sophisticated navigation skills in all rooms, especially in a maze-like

corridor in which users can quickly lose orientation, or a room full of alarm tiles

where any wrong step may cause the alarm to be triggered. Finally, it includes a

room with many small rooms that require precise navigation.

6.2.3 Experimental results

Following the human evaluation study, we analysed the results in order to draw

conclusions with respect to the effects that a joint or an isolated optimisation has on

interactions and user satisfaction. Overall, the analysis is based on fifty-seven games.

Objective metrics. Table 6 compares average results (with their corresponding

standard deviations) for joint and isolated settings and shows the p-values indicating

the significance of the comparison between both settings. We can see that the jointly

optimised system performs better than the system that was optimised in isolation

according to almost all metrics. It produces shorter interactions using fewer words

and turns and causes fewer user turns and hesitations and higher task success. The

key findings can be summarised as follows:

• The isolated policy produces significantly more system words (O3) than the

joint policy (p < 0.04). This difference could be interpreted as a suboptimal

balance between efficiency and detail in instructions. When the joint policy

10 http://www.give-challenge.org/research/page.php?id=give-2.5-index (accessed
April 22, 2013).



Hierarchical reinforcement learning for situated NLG 27

Table 6. Results for the objective evaluation metrics per policy for joint and isolated
settings. The objective metrics are organised into three groups: interaction efficiency
(EFF) (the lower values, the better), interaction quality (QUA) (the lower values, the
better) and task success (TS) (the higher values, the better). Numbers in the third and
fourth columns refer to averages (per game) and are given together with their standard
deviations. The final column shows p-values for the comparison obtained with a paired
t-test. The best result per metric is indicated in bold face

Objective metric Joint Isolated p-value

EFF

(O1) Elapsed time (mm:ss) 11:40 ± 5:54 13:19 ± 4:56 0.28

(O2) System turns 314.5 ± 151.3 330.2 ± 80.6 0.7

(O3) System words 3025.3 ± 1522 3887.7 ± 1271 0.04

(O4) System words per turn 9.6 ± 1.3 12.1 ± 1.5 0.0001

(O5) User turns 20.7 ± 14.0 22.2 ± 8.7 0.7

QUA

(O6) User help requests 2.4 ± 3.0 2.0 ± 1.4 0.6

(O7) User hesitations 18.4 ± 12.6 20.3 ± 8.7 0.5

(O8) User false (all) 21.4 ± 15.5 19.3 ± 6.9 0.6

(O9) User false (navigation) 11.0 ± 7.6 12.8 ± 6.2 0.4

(O10) User false (manipulation) 10.3 ± 10.4 6.5 ± 3.7 0.1

TS
(O11) Binary TS 0.80 ± 0.4 0.61 ± 0.5 0.1

(O12) Graded TS 0.43 ± 0.3 0.23 ± 0.2 0.009

is able to achieve an equal (or higher) task success using fewer words, the

isolated policy most likely included redundant detail.

• The isolated policy produces significantly more system words per turn (O4)

than the joint policy (p < 0.0001). This difference again points to a suboptimal

balance of choosing or organising utterance contents. The cognitive load that

is imposed on the user during an interaction is increased with the number of

system words per turn that the user needs to keep in mind. (Unnecessarily)

long utterances can therefore lead to user confusions and affect task success.

• The joint policy achieves higher task success than the isolated policy. While

the difference in terms of binary task success (O11) only shows a statistical

trend (p < 0.1), the difference in graded task success (O12) is significant at

p < 0.0009. This means that users interacting with the joint policy encounter

fewer problems and experience more smooth and successful interactions. This

is also reflected in the large difference between binary and graded task success.

The comparison of the joint policy and the isolated policy seems to suggest that

a joint optimisation leads to shorter, more efficient and more successful interactions.

An exception to the overall trend is represented by metric O8, the number of false

user actions overall, and metric O10, the number of false manipulation actions, i.e.

wrong button presses. While users of the joint policy press on average 10.3 (±10.4)

wrong buttons, users of the isolated policy press only 6.5 (±3.7) wrong buttons on

average. The reason for this is most likely that few users in the joint setting pressed

a very high number of wrong buttons, as is indicated by the high standard deviation

of the O10 metric. The majority of users pressed very few (or no) wrong buttons,

however.
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Table 7. User satisfaction results per policy (scores range from 1 to 5, and are the
better, the higher). Numbers refer to averages per game and are shown with standard
deviations. The last column shows p-values for the comparison of systems. The best
results per metric are indicated in bold face

Subjective metric Joint Isolated p-value

(Q1) Easy to understand 3.4 ± 1.0 3.26 ± 1.09 0.6

(Q2) Task easy 3.01 ± 1.02 3.0 ± 1.16 0.9

(Q3) Interaction pace 2.9 ± 1.32 2.86 ± 1.45 0.9

(Q4) What to do 3.43 ± 1.02 2.91 ± 1.08 0.08

(Q5) Expected behaviour 3.67 ± 1.14 3.52 ± 1.03 0.6

(Q6) Future use 2.6 ± 0.8 2.56 ± 0.89 0.9

(Q7) Appropriate help 3.3 ± 1.04 2.87 ± 1.21 0.1

(Q8) Enjoy game 2.95 ± 1.08 2.56 ± 1.03 0.1

(Q9) Recommend to friend 3.0 ± 1.16 2.56 ± 1.26 0.1

(Q10) Naturalness 3.36 ± 0.95 3.21 ± 1.07 0.6

Sum (maximal score 50) 31.62 29.31

Subjective metrics. The subjective user ratings indicate user satisfaction with each

system. Table 7 summarises the results, where the last column in the table provides

the p-value for the comparison of the previous two columns. Overall, we can see a

clear tendency of users preferring the joint policy over the isolated one. The user

satisfaction ratings for all games can be summarised as follows:

• Users consistently rate the joint policy better than the isolated policy, even

though unfortunately none of the differences is statistically significant.

• The metric ‘Expected behaviour’ (Q5) receives the highest ratings for both

the joint policy (3.67 ± 1.14) and the isolated policy (3.52 ± 1.03). In turn,

the metric ‘Future use’ (Q6) receives the lowest, 2.6 (±0.8) for the joint

policy and 2.56 (±0.89) for the isolated policy. For the latter case, the metrics

‘Enjoy game’ (Q8) and ‘Recommend to friend’ (Q9) are rated similarly low.

Especially, the metrics Q8 and Q9 can mean that users of the isolated policy

enjoyed their games less than users of the joint policy. The metric ‘Future

use’ in contrast could also have a different interpretation. Users may not

have seen the usefulness of using the game in the future because they are

not interested in video games: on a scale of 1 (i.e. ‘playing never’) to 5 (i.e.

‘playing very often’), our participants rated themselves as playing video games

between ‘rarely’ and ‘never’ (1.78). An alternative interpretation is that users

found the pace of the interaction too fast, as indicated by the ‘Interaction

pace’ (Q3) metric, so that slowing the interaction pace down could lead to

higher user satisfaction.

• The metric ‘What to do’ (Q4) showed the biggest difference in user ratings

between the joint (3.43 ± 1.02) and the isolated (21 ± 1.08) systems. While it is

not statistically significant, it shows the strongest trend among all individual

subjective categories. Users seemed to find instructions generated by the joint

system more easy to interpret and felt more safely guided through the task.
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Fig. 10. (Colour online) Illustration of two factors, from an explanatory factor analysis, that

explain 65% of variability found in subjective user ratings: ‘usability’ and ‘pace’.

Despite an overall trend that users seem to prefer the joint policy over the isolated

one, we were not able to report any significant differences. Related work on the

evaluation of spoken dialogue systems suggests a factor analysis (Dzikovska et al.

2001; Möller et al. 2007; Wolters et al. 2009). An explanatory factor analysis explains

the variability found in a set of observed, correlated variables in terms of a set of

unknown latent variables, or factors. These factors are often fewer than the initial

set of variables and reveal those underlying subjective categories that users were

concerned about in their ratings. The advantage of a factor analysis is often that it

reveals those subjective experiences with a system that matter to users, rather than

reflecting the system designer’s expectations – as is often the case with predefined

questionnaires. Please see Hone and Graham (2000) for details on a factor analysis

applied to spoken language processing. A factor analysis applied to our subjective

metrics of the GIVE evaluation showed the following. An illustration is provided in

Figure 10.

Two factors were identified as accounting for 65% of the variability found in user

ratings. For Factor 1, which we can call usability, subjective metrics (Q4) ‘What to

do’, (Q8) ‘Enjoy game’ and (Q9) ‘Recommend to friend’ had high factor loadings of

>0.80. Factor loadings indicate correlations between questionnaire items. For Factor

2, which we can call pace, only subjective metric (Q3) ‘Interaction pace’ had a high

factor loading of >0.80. The difference between the joint policy and the isolated

policy for factor pace was not significant at 0.9. While the difference for factor
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usability was not significant either, at p < 0.07, at least, we can observe a statistical

trend for this factor. All in all, these results indicate that statistical significance may

have been achieved here if more data were available.

6.3 Comparison with Systems from the GIVE Challenge

To allow for a comparison of our hierarchical RL framework with other state-of-

the-art approaches to situated NLG, Table 8 contrasts our results with objective

and subjective metrics collected for several systems in the GIVE-2 and GIVE-2.5

challenges. The former was run in 2010 and collected games from 1,825 participants.

The latter was run in 2011 and collected 536 games. The official results were

discussed in Koller et al. (2010) and Striegnitz et al. (2011), respectively. GIVE-2.5

was run with the same evaluation worlds as our evaluation. The worlds in GIVE-2

were comparable in that all three worlds posed different challenges for the systems.

World 1 was designed to be most similar to the training worlds, while World 2

focused on referring expressions and World 3 on navigation. All evaluations were

therefore carried out in comparable, if not identical, virtual worlds. All subjective

scores in the table were rescaled from the −100 to +100 scale used in GIVE to our

1 to 5 scale.

We chose seven systems for our comparison, the two best systems of GIVE-2

(NA and S) and the five best systems from GIVE-2.5 (P1, P2, C, CL and L). Since

the overall results of GIVE-2.5 were better than that of GIVE-2, we included more

systems from the latter challenge in order to make a more challenging comparison.11

There is unfortunately not always a perfect match between subjective metrics,

but we wanted to include them nevertheless for a more comprehensive point of

comparison. In particular, not all questions that we asked participants were the same

that GIVE participants were asked. For category Q3, while we asked subjects Was

the speed of the interaction okay?, GIVE asked participants to rate the statement The

system’s instructions were visible long enough for me to read them. For category Q4,

we asked Did you know at each moment what to do?, while the GIVE questionnaire

contained I was confused about which direction to go in. Finally, while we asked Did

the system give you appropriate help when you needed it? for category Q7, GIVE

used The system immediately offered help when I was in trouble. All objective and

other subjective categories have a direct correspondence. Unfortunately, the number

of questionnaire items differed in GIVE-2 and GIVE-2.5 so that some fields in the

table cannot be compared. Since we are comparing data from separate evaluations,

the results in Table 8 serve more as an indication rather than a direct comparison

and statistical significance is not reported.

11 No systems from GIVE-1 are compared because the setup of the first study was different
in that users were not able to move through the environment freely, but had to move in
discrete steps.



H
iera

rch
ica

l
rein

fo
rcem

en
t

lea
rn

in
g

fo
r

situ
a
ted

N
L

G
3
1

Table 8. Objective and subjective metrics for our systems (J = Joint and I = Isolated) compared with the best systems of the GIVE-2
challenge (NA and S) and the GIVE-2.5 challenge (P1, P2, L, C, CL). ∗Measures taken from Benotti and Denis (2011b) rather than the
GIVE challenge

Metric System

Objective metrics J I NA S P1 P2 L C CL

Binary task success 0.80 0.61 0.47 0.40 0.66 0.65 0.68 0.70 0.58

Duration (sec.) 700 799 344 467 407 415 341 538 539

Instructions (no.) 312.3 329 224 244 214 235 211 254 183

Words (total) 3075.6 4024.3 1,408 1,343 1,122 1,139 962 1,328 1,269

Subjective metrics J I NA S P1 P2 L C CL

(Q1) Easy to underst. 3.4 3.26 4.05 3.95 / / / / /

(Q3) Interaction pace 2.9 2.86 2.65 2.5 3.42 3.45 3.77 3.55 2.82

(Q4) What to do 3.43 2.91 3.02 2.57 3.15 2.9 3.2 3.8 3.17

(Q7) Appropriate help 3.3 2.87 3.3 2.3 3.7 3.37 3.45 3.8 2.9

(Q8) Enjoy game 2.95 2.56 2.3 2.3 / / / / 2.6∗

(Q9) Recomm. friend 3.0 2.56 1.75 1.9 / / / / 1.8∗

(Q10) Naturalness 3.36 3.21 2.4 2.6 / / / / 3.2∗
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We can nevertheless make a number of observations from the data comparison:

• In terms of task success, we can see that our joint policy outperforms all other

systems by at least 10%. This result also holds for other GIVE systems which

were published separately from the challenge, such as Garoufi and Koller

(2010) who achieve 69%, and Benotti and Denis (2011b) who achieve 70%.

This result reflects our reward function which placed a substantial weight

on task success, rather than other metrics such as instruction or interaction

length.

• The other objective metrics seem to suggest that both of our systems generate

significantly more instructions and are more verbose than the other GIVE

systems, which led to longer interaction times. This reflects the generation

strategy learnt by our system, which was able to combine high- and low-level

instructions and aggregate several instructions into one. This produced many

instructions such as Go left and then towards the blue button. In contrast,

many GIVE systems relied predominantly on shorter instructions such as

turn left or press blue.

• In terms of the subjective metrics, we can see that our system is slightly

outperformed in ‘Easy to understand’ and ‘�Interaction pace’ metrics. The

latter was already indicated in our own evaluation, where participants

wished that instructions were displayed slightly longer and the system would

reduce its overall interaction speed. On the other hand, our system performs

substantially better in the metric ‘What to do’ than most competitors and

was ranked in the middle for the metric ‘Appropriate help’.

• We can further see that participants considered our system’s instructions more

natural than its competitors’, enjoyed playing more and would recommend

the game to a friend more often. In terms of naturalness, this is again reflected

in our reward function, where we placed an explicit weight on human-like

surface forms. To an extent, the other metrics confirm our earlier results

in that participants enjoy playing when they win the trophy and they do

not enjoy playing when they lose. Participants may therefore have enjoyed

playing with our system most because it achieved the highest task success

score overall.

• Finally, we can see that while the isolated policy is outperformed in many

categories, it is still able to compete with some systems, such as in the categor-

ies ‘Interaction pace’, ‘Enjoy game’, ‘Recommend to friend’, ‘Naturalness’ and

‘Binary task success’. This indicates that even a policy optimised in isolation

represents a competitive baseline.

The highest overall scores in this comparison were achieved by two rule-based

systems, C (Racca, Benotti and Duboue 2011) and L (Denis 2011). This suggests that

a carefully designed ad hoc solution to a problem can still outperform many data-

driven systems in NLG nowadays. Systems P1/P2 (Garoufi and Koller 2011b) and

CL (Benotti and Denis 2011a) represent more state-of-the-art approaches. System

P1 was using a combination of planning and supervised learning to NLG that

aimed to maximise the understandability of referring expressions (P2 acted as a
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planning-only baseline). This system received good scores for ‘Interaction pace’ and

‘Appropriate help’, possibly because its planning steps guided users in small steps

avoiding confusions and maximising understandability. System CL used a corpus-

based selection approach, choosing instructions from a pre-collected corpus of

human utterances in the same domain. This system was rated well for ‘Naturalness’.

The reason is probably that it relied on instructions that humans produced for the

very same situation the system was facing. On the other hand, this method does not

take context into account which can lead to inconsistencies and low scores in other

subjective categories. In summary, the comparison with these systems shows that our

hierarchical RL approach is able to achieve comparable performance to state-of-

the-art systems: while our joint policy is outperformed in some subjective categories,

it achieves higher task success and more enjoyable and natural interactions than

the other systems. This corresponds to the optimisation metrics that our reward

function was designed for.

7 Conclusions and future directions

Natural Language Generation systems for interactive contexts are faced with

numerous trade-offs in generating an utterance that is optimally adaptive to the user

and situation. Trade-offs include the level of detail chosen in a situation as well as the

speed and efficiency with which instructions can be generated within a dynamic and

constantly changing context. This paper has suggested to address these challenges

using hierarchical RL. It extends previous research on NLG for interactive systems

in several ways. First, it represents a novel hierarchical optimisation framework

for situated NLG. This model is based on a divide-and-conquer approach and

optimises a hierarchy of subtasks rather than one single complex task. In this way it

is more scalable for large state–action spaces than previous approaches towards RL

for NLG. Second, this hierarchical model has been trained with a comprehensive

data-driven reward function addressing several aspects of our situated scenario.

In contrast, related work has focused either on hand-crafting reward functions or

has induced them for single aspects of the task only. Finally, we have compared

two different learning settings for our domain, a joint setting in which a policy is

learnt with predefined shared knowledge across subtasks, and an isolated setting

without any shared knowledge. Results from simulation and a task-based human

evaluation study showed the benefits of the joint architecture in optimising the

trade-off between efficiency and detail in situated interaction. The joint setting led

to more successful and efficient interactions that were better perceived by human

users than their isolated counterpart.

Some future research directions are summarised in the following.

First, the idea of jointly optimising the behaviour of distinct, but related, subtasks is

likely to enhance the performance of systems beyond NLG and dialogue. Candidate

areas for such a joint treatment are language analysis and production, or multi-modal

systems, where a joint treatment could help to reinforce communicated contents with

non-linguistic behaviours.
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Second, RL agents typically learn a behaviour policy off-line during a training

phase in a simulated environment and then execute the learnt policy statistically

during deployment. To allow agents to learn from real interactions, however, via

online learning and adaptation, more efficient training algorithms are needed that

allow action values to be computed quickly and reliably so that they could

immediately have an impact on the agent’s current behaviour. See Bohus et al.

(2006), Cuayáhuitl and Dethlefs (2011a) and Gašić et al. (2011) for some first

advances.

Third, RL agents are typically designed by a system developer who bases his

or her design decisions on the knowledge of the task, the domain or the end

user of the system. Drawbacks are that system development can be slow and

labour-intensive, and different design decisions can have different effects on the

performance of a system. An interesting direction for future research is there-

fore the investigation of methods for inducing the structure and features of the

learning agent automatically from human or domain data. In this way, hierarchy

construction could be automatised to accelerate development times and increase

reuse of resources. Simultaneously, the benefits of a modular architecture and

using a divide-and-conquer approach would be preserved for easy maintenance

and scalability to large search spaces. Automatic feature induction is also inter-

esting for deciding the features that should be shared between agents for a joint

optimisation.

Fourth, RL agents for NLG currently make the simplifying assumption that their

knowledge about the user and the environment is complete. This assumption is often

unrealistic because most environments are not fully observable. While research on

partially observable environments has been done on dialogue systems (Williams and

Young 2007), generation under uncertainty has yet to be transferred to research on

trainable NLG.

Fifth, our model relies on tabular state representations which can affect its

scalability as the state–action space grows. While we have suggested a hierarchical

setting to address this problem, function approximation techniques, such as linear

approximation, neural networks or decision trees, are an alternative (or comple-

mentary) method to enhance scalability. Some approaches for dialogue include

Henderson, Lemon and Georgila (2008), Jurcı́cek et al. (2011), Pietquin et al. (2011)

and Cuayáhuitl, Kruijff-Korboyová and Dethlefs (2012).

Finally, to evaluate our suggested methods on a larger scale, we would like

to transfer hierarchical RL to new domains, such as text generation, and new

applications, such as sentence compression, summarisation or machine translation.
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Appendix A: Hierarchical state and action space

This section provides a detailed description of the knowledge and actions available

to each learning agent in the hierarchy in Figure 5. Each agent will be shown as

a feature structure and explained in turn. In the state representation Si
j , variables

shown in cursive fonts are shared variables. This means that they were originally

state variables of single agents which can now be accessed by other agents as well.

This is to take them into account for their own decision-making. All non-cursive

variables are individual state variables that cannot be accessed by other agents.

This is the main difference between learning a jointly optimised policy and a policy

optimised in isolation: while in the former, agents can access shared state variables,

in the latter only individual, non-shared variables exist. The state space of the

isolated agent can therefore be obtained by excluding all cursive state variables. In
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the action set Ai
j , bold-face actions denote composite actions, and the goal state Gi

j

defines the termination conditions for the agent.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 0
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1:GoalStatus← {0=continue,1=end}
v2:GoalVisible ← {0=true,1=false}
v3:NextSysAct← {0=navigation,1=reference, 2=confirm,

3=stop navigation, 4=wrong button}
v4:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v5:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A0
0

⎡
⎢⎢⎣

confirm,
reference M1

0 ,
navigation M1

1 ,
stop navigation,
wrong button

⎤
⎥⎥⎦

G0
0

[
v1=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Agent M0
0 , first of all, is the root agent which initiates all generation episodes. It

can either choose a primitive action such as to confirm a previous user action, Well

done!, tell the user to stop navigating, Wait!, or not to press a button, Not this one!.

Alternatively, it can choose a composite action and pass control down to a child

subtask. Agent M1
0 is responsible for references and agent M1

1 is responsible for

navigation instructions.

Specifically, agent M1
0 deals with generating references to buttons or landmarks.

It can make decisions based on the visibility of the next goal, the presence of

landmarks and the reference context. It should also make sure that an utterance

plan has been chosen before presentation to the user. If a button reference needs to

be generated, it may, for example call child subtask M2
0 .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v6:GoalVisible ← {0=true,1=false}
v7:PresenceOfLandmarks← {0=not present,1=present}
v8:Presentation ← {0=none,1=composite,2=incremental}
v9:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v10:ReferenceContext← {0=button manipulation,1=navigation}
v11:Reference← {0=unfilled,1=filled}
v12:Repair← {0=unfilled,1=filled}
v13:UtterancePlan← {0=unfilled,1=filled}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1
0

⎡
⎢⎣

plan utterance M2
1 ,

generate button reference M2
0 ,

repair utterance M2
2 , do not repair utterance,

generate landmark reference

⎤
⎥⎦

G1
0

[
v11=1,v12=1,v13=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Agent M2
0 generates referring expressions to buttons. It decides whether to mention

a referent’s colour, a distractor, it’s spatial position etc., based on information about

the referent’s physical properties. Eventually, it should call agent M3
0 to make sure

that a surface form for the referring expression is generated.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 2
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v24:ColourDistractor← {0=unfilled,1=filled}
v25:ColourReferent← {0=unfilled,1=filled}
v26:DiscriminatingColourDistractor← {0=false,1=true}
v27:DiscriminatingColourReferent← {0=false,1=true}
v28:Distractor← {0=unfilled,1=filled}
v29:HorizontalRow← {0=false,1=true}
v30:Horizontal← {0=unfilled,1=filled}
v31:NumberOfDistractors← {0=none,1=one, 2=two or more}
v32:PositionInConfiguration← {0=corner,1=edge,2=middle,

3=only button,4=other}
v33:Position← {0=unfilled,1=filled}
v34:Surface← {0=unfilled,1=filled}
v35:Type← {0=unfilled,1=filled}
v36:VerticalRow← {0=false,1=true}
v37:Vertical← {0=unfilled,1=filled}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

referring expression M3
0 ,

include distractor, do not include distractor,
include type, do not include type,
include referent colour, do not include referent colour,
include distractor colour, do not include distractor colour,
include horizontal position, do not include horizontal position,
include vertical position, do not include vertical position,
include position in configuration

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

G2
0

[
v24=1,v25=1,v28=1,v30=1,v33=1,v34=1,v35=1,v37=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Agent M2
0 also shows that many actions are complementary to each other. This

means that there is an action pair, such as include distractor and do not include

distractor, one of which needs to be chosen at each instance in order to update

the corresponding state variable, here Distractor, from unfilled to filled. This is

a precondition for reaching the terminal state and ensures that all actions are

considered by the agent. Since the reward function penalises the agent for each

action it takes, it may otherwise happen that the agent neglects favourable actions

in order to avoid a negative reward.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 1
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v14:Aggregation ← {0=none,1=conjunction,2=sequence}
v15:AllRoomsKnown← {0=false,1=true}
v16:GoalVisible ← {0=true,1=false}
v17:NavigationContent← {0=mixed,1=low,2=high}
v18:NavigationLevel← {0=unfilled,1=filled}
v19:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v20:Repair← {0=unfilled,1=filled}
v21:RouteLength ← {0=short,1=long}
v22:UserConfusions ← {0=none,1=one, 2=two or more}
v23:UtterancePlan← {0=unfilled,1=filled}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1
1

⎡
⎢⎢⎢⎣

plan utterance M2
1 ,

repair utterance M2
2 ,

do not repair utterance,
generate low level M2

3 ,
generate high level M2

4

⎤
⎥⎥⎥⎦

G1
1

[
v18=1,v20=1,v23=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In terms of navigation, agent M1
1 is responsible for choosing a navigation level.

It can choose low-level navigation by calling agent M2
3 or high-level navigation

by calling agent M2
4 . Mixed strategies can be generated by alternating these two

choices. It can also decide to repair a previous navigation instruction (by calling

agent M2
2 ) in case the user was not able to comprehend it, and it should make

sure that an utterance plan has been chosen before presentation to the user. Agent

M1
1 shares state variables on the aggregation and presentation strategy with the

utterance planning agent M2
1 so that a good balance between cognitive load and

efficiency can be found.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 2
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v51:Destination← {0=unfilled,1=filled}
v52:DoorAction← {0=none,1=go through,2=go towards}
v53:GoalVisible ← {0=true,1=false}
v54:Instruction← {0=unfilled,1=filled}
v55:LeavingRoom← {0=false,1=true}
v56:LowLevelContent← {0=direction,1=orientation,2=straight}
v57:Path← {0=unfilled,1=filled}
v58:VisibleAndNear← {0=none,1=objects,2=buttons}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2
3

⎡
⎢⎢⎢⎢⎢⎣

generate destination M3
1 ,

generate direction M3
2 ,

generate orientation M3
3 ,

generate path M3
4 ,

generate no path,
generate straight M3

5

⎤
⎥⎥⎥⎥⎥⎦

G2
3

[
v51=1,v54=1,v57=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The child agents of task M1
1 , low- and high-level navigation, both deal with content

selection of their particular navigation type. Agent M2
3 generates instructions of types

direction, orientation or straight. It can optionally also include a destination or path

instruction. Agent M2
4 generates instructions of types destination and path, and

optionally a referring expression, in case a button is a destination instruction. Both

agents should ensure that the navigation instructions receive a surface realisation

before being presented to a user by calling agents M3
1...5.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 2
4

⎡
⎢⎢⎢⎢⎢⎢⎣

v59:DestinationType← {0=other,1=landmark,2=button}
v60:GoalVisible ← {0=true,1=false}
v61:Instruction← {0=unfilled,1=filled}
v62:LeavingRoom← {0=false,1=true}
v63:NextRoomEquals← {0=same,1=previous,2=corridor,3=other}
v64:Path← {0=unfilled,1=filled}
v65:Surface← {0=unfilled,1=filled}

⎤
⎥⎥⎥⎥⎥⎥⎦

A2
4

⎡
⎢⎣

referring expression M3
0 ,

generate destination M3
1 ,

generate path M3
4 ,

generate no path

⎤
⎥⎦

G2
4

[
v61=1,v64=1,v65=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Whenever an utterance plan is needed, agent M2
1 can be called. This agent decides

whether to aggregate a set of messages or not, and if so, whether to conjoin them

or order them sequentially. It further chooses an information structure (whether the

theme should be marked or unmarked) and possible temporal markers (first, second,

then, now etc.). Finally, it decides whether to present information in a composite

manner, i.e. all in one, or incrementally, in a piece-meal fashion. The former usually
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supports efficiency whereas the latter reduces cognitive load. The agent has access

to the navigation level chosen in its state representation so that this can further be

considered for choosing an appropriate presentation strategy.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 2
1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v38:Aggregation← {0=unfilled,1=filled}
v39:InfoStructure← {0=unfilled,1=filled}
v40:NavigationLevel ← {0=unfilled,1=low,2=high}
v41:NumberOfInstructions← {0=none,1=one, 2=two,3=three or more}
v42:Presentation← {0=unfilled,1=filled}
v43:PrevUsrReaction← {0=none, 1=perform desired action,

2=perform undesired action,
3=hesitate, 4=request help}

v44:RepairStatus ← {0=none,1=repair}
v45:TemporalMarkers← {0=unfilled,1=filled}
v46:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A2
1

⎡
⎢⎢⎣

choose aggregation, choose no aggregation,
choose aggregation, choose no aggregation,
choose temporal markers, choose no temporal markers,
choose marked theme, choose unmarked theme,
choose composite presentation, choose incremental presentation

⎤
⎥⎥⎦

G2
1

[
v32=1,v33=1,v35=1,v37=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sometimes an utterance can be unsuccessful because the user was not able to

comprehend or interpret it correctly. In such cases, agent M2
2 may be called for

a repair. It can either paraphrase a previously unsuccessful utterance, repeat it, or

switch the current navigation strategy (from high to low level, e.g.).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 2
2

⎡
⎢⎣

v47:GoalVisible ← {0=true,1=false}
v48:NavigationLevelContent← {0=low level,1=high level}
v49:Repair← {0=unfilled,1=filled}
v50:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎦

A2
2

⎡
⎣ paraphrase utterance,

repeat utterance,
switch navigation level

⎤
⎦

G2
2

[
v40=1

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Agents M3
0...5, finally, deal with generating different surface realisations for the

semantics of referring expressions (agent M3
0 ), destination instructions (agent M3

1 ),

direction instructions (agent M3
2 ), orientation instructions (agent M3

3 ), path instruc-

tions (agent M3
4 ) and instructions to go straight (agent M3

5 ).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 3
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v66:Distractor ← {0=true,1=false}
v67:Landmark ← {0=true,1=false}
v68:Position ← {0=true,1=false}
v69:ReDeterminer← {0=unfilled,1=the,2=that,3=empty}
v70:ReSpatialRelation← {0=unfilled,1=adv,2=pp,3=rel clause pp}
v71:ReType← {0=unfilled,1=button, 2=one, 3=it, 4=empty}
v72:ReVerb← {0=unfilled,1=push,2=press,3=click,4=click on,

5=choose,6=get,7=hit, 8=empty}
v73:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A3
0

⎡
⎢⎢⎣

det the, det that, det empty,
sr adv, sr pp, sr rel clause pp,
type button, type one, type empty, type it,
verb push, verb press, verb click, verb click on,
verb choose, verb get, verb hit, verb empty

⎤
⎥⎥⎦

G3
0

[
v69¬0,v70¬0,v71¬0,v72¬0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 3
1

⎡
⎢⎢⎢⎢⎣

v74:DesDirection← {0=unfilled,1=direction, 2=straight, 3=empty}
v75:DesPrep← {0=unf.,1=to, 2=toward, 3=empty, 4=into, 5=in, 6=until}
v76:DesRelatum← {0=unfilled,1=room, 2=landmark, 3=empty}
v77:DesVerb← {0=unfilled,1=go, 2=keep going, 3=empty, 4=get,

5=return, 6=continue, 7=walk}
v78:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎦

A3
1

⎡
⎢⎣

dir direction, dir straight, dir empty, prep to, prep towards,
prep into, prep in, prep until, relatum room, relatum landmark,
relatum empty, verb continue, verb go, verb walk, verb get,

verb return, verb empty, verb keep going, prep empty

⎤
⎥⎦

G3
1

[
v74¬0, v75¬0,v76¬0,v77¬0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 3
2

⎡
⎢⎢⎢⎢⎢⎢⎣

v79:DirDirection← {0=unfilled,1=direction, 2=empty}
v80:DirMeans← {0=unfilled,1=destination, 2=path, 3=location,

4=empty}
v81:DirPrep← {0=unfilled,1=to(the), 2=to(your), 3=empty}
v82:DirVerb← {0=unfilled,1=go, 2=turn,3=bear,4=hang,5=move,

6=empty}
v83:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎥⎥⎦

A3
2

[
dir direction, dir empty, means destination, means path,
means location, means empty, prep to(the), prep to(your), verb empty,
prep empty, verb go, verb turn, verb bear, verb move, verb hang

]

G3
2

[
v79¬0,v80¬0,v81¬0,v82¬0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 3
3

⎡
⎢⎣

v84:Direction← {0=unfilled,1=around, 2=round, 3=degrees, 4=empty}
v85:OriMeans← {0=unfilled,1=path, 2=destination, 3=empty}
v86:OriVerb← {0=unfilled,1=turn, 2=you want to turn}
v87:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎦

A3
3

[
dir around, dir round, dir degrees, dir empty, means path,
means destination, verb turn, verb you want to turn, means empty

]
G3

3

[
v84¬0,v85¬0,v86¬0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 3
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v88:PathMeans← {0=unfilled,1=straight,2=destination,3=direction,
4=empty}

v89:PathPrep← {0=unfilled,1=through,2=along,3=across,4=empty,
5=down, 6=past}

v90:PathRelatum← {0=unfilled,1=tunnel,2=space,3=room,4=landmark,
5=empty, 6=path}

v91:PathVerb← {0=unfilled,1=go,2=keep going,3=walk,4=pass,
5=empty, 6=continue}

v92:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A3
4

⎡
⎢⎢⎣

means straight, means empty, means destination, means direction,
prep through, prep along, prep across, prep empty, prep down,
verb go, verb keep going, verb walk, verb pass, verb empty,
relatum space, relatum landmark, relatum tunnel, relatum room,
relatum empty, prep empty, relatum path, verb continue, prep past

⎤
⎥⎥⎦

G3
4

[
v88¬0,v89¬0,v90¬0,v91¬0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S 3
5

⎡
⎢⎢⎢⎢⎢⎢⎣

v92:StrDirection← {0=unfilled,1=straight, 2=forward, 3=straight ahead,
4=ahead, 5=empty}

v93:StrMeans← {0=unfilled,1=direction, 2=destination, 3=orientation,
4=empty}

v94:StrVerb← {0=unfilled,1=go, 2=empty, 3=keep going,
4=you want to go

v95:UserConfusions ← {0=none,1=one, 2=two or more}

⎤
⎥⎥⎥⎥⎥⎥⎦

A3
5

[
dir straight, dir forward, dir straight ahead, dir ahead, dir empty,
means direction, means destination, means orientation, means empty,
verb go, verb empty, verb keep going, verb you want to go

]

G3
5

[
v92¬0,v93¬0,v94¬0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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All surface realisation agents share knowledge of previous choices. During

learning, each surface realisation agent will make its own surface realisation decisions

and then evaluate their suitability under different circumstances given the rewards

they yielded in different contexts (as described in Section 5.3.2).

Appendix B: An example generation episode

The feature structure below shows an example generation episode for the utterance

Go to the sofa, where control is passed from the root agent down to the bottom

of the hierarchy. At all levels, decisions are made towards the final form of the

utterance. Information is passed between agents in the form of state updates in the

agent’s knowledge base.

Generation starts with the root agent M0
0 , whose state s0 includes information on

the current goal status and next system action required. Both kinds of information

are stored in the agent’s knowledge base but originate from the virtual world.

The agent then executes a navigation instruction, which is a composite action,

so that control is passed to the child agent M1
1 . This is a content selection (CS)

subtask. The current state here contains information on that the next goal is

visible and on the current navigation level, which can be low, high or mixed.

This information is available from the generation history. The agent also knows

that the current route leg is short, the user is not confused and has executed

the previous instruction successfully. All this information enters the agent’s know-

ledge base through the virtual world (even though information about the user

always originates in the user’s knowledge base, as shown in Figure 4). Finally,

the agent has information on that the utterance planning agent has not yet been

consulted, which is required, although before execution can terminate. It therefore

chooses to call agent M2
1 next to perform utterance planning. Control is passed

to the new subagent, which again has to choose the best action given its current

knowledge.

Note that agents M1
1 and M2

1 share several state variables, which are shown

in cursive fonts. Agent M1
1 has knowledge of the presentation type chosen, even

though it has no control over the decision. It is an utterance planning decision

and is therefore made in agent M2
1 . Similarly, agent M2

1 knows the current nav-

igation level, which is originally determined by agent M1
1 . Such shared state

variables are the main mechanism through which a joint optimisation occurs.

Since agents share knowledge with other agents, they are able to consider this

knowledge in their own decision-making process. For example, had agent M1
1

seen that the presentation strategy chosen by M2
1 was complex, it could have

chosen a simpler navigation strategy. Or conversely, agent M2
1 is able to take

the high navigation level chosen by M1
1 into account for choosing a presentation

strategy that eases the user’s cognitive load. All other variables, which are not

shown in cursive fonts, are specific to one agent and cannot be accessed by

others.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0
0
: Root (CS)

s0 = GoalStatus=continue
NextSysAct=navigate

a0 = navigation M1
1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
1
: Navigation (CS)

s1 = GoalVisible=true
NavigationLevel=high
NavInstruc.=unfilled
Presentation=unfilled
PrevUserReaction=desired
RouteLength=short
UserConfusions=0
UtterancePlan=unfilled

a1 = utterance plan M2
1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2
1
: Utterance Plan (UP)

s2 = NavigationLevel=high
Presentation=unfilled
TempMarkers=unfilled
UserConfusions=0

a2 = temporal marker
s3 = TempMarkers=filled
a3 = composite presentation
s4 = Presentation=filled (T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s5 = UtterancePlan=filled
Presentation=filled

a5 = high-level M2
4 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2
4
: High-level (CS)

s6 = Destin.=sofa
GoalVisible=true
Destin.=unfilled

a6 = destination M3
1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M3
1
: Destination (SR)

s7 = Prep=unfilled
Relatum=unfill.
Verb=unfilled
UserConfusions=0

a7 = verb : go
s8 = Verb=go
a8 = prep : to
s9 = Prep=to
a9 = relatum : sofa
s10 = Relat.=sofa (T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s11 = Destin..=filled (T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s12 = NavInstruc.=filled (T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s13 = GoalStatus=end (T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example generation episode for the utterance Go to the sofa. Control is passed from parent to child agents
whenever a composite action is invoked and is passed back upon termination. Agent names along with their
subtasks are shown in red, as are terminal states. (T) denotes the terminal state for agent Mi

j .

Every time an agent takes an action, this is reflected in the updated state

representation at the next time step.12 Once utterance planning is complete with

decisions on presentation style and temporal markers, control is passed back to the

calling parent agent, M1
1 .

Subsequently, decisions are made to obtain a high-level navigation instruction

(by calling agent M2
4 ) and to obtain a surface form for a destination instruction

(agent M3
1 , called by M2

4 ). The latter is a surface realisation (SR) task, which bases

decisions on lexical and grammatical information such as the verb, preposition and

relatum to be realised. Once a surface form has been chosen, control is passed back

to the calling agent and the destination slot is updated from unfilled to filled. At this

point, control is passed back through several agents that have reached their terminal

state and the generation process is completed. See Figure 6 for an illustration of the

hierarchical state–action sequence of this example. For illustration, this example has

relied on a subset of possible states and actions per agent.

12 For brevity, we show only the updated state variables and omit those that are unchanged
from the original state.


