DEFIne: A Fluent Interface DSL for Deep Learning
Applications

Nina Dethlefs
The Digital Centre
School of Engineering and
Computer Science
University of Hull, UK
n.dethlefs@hull.ac.uk

ABSTRACT

Recent years have seen a surge of interest in deep learning
models that outperform other machine learning algorithms
on benchmarks across many disciplines. Most existing deep
learning libraries facilitate the development of neural nets
by providing a mathematical framework that helps users im-
plement their models more efficiently. This still represents
a substantial investment of time and effort, however, when
the intention is to compare a range of competing models
quickly for a specific task. We present DEFIne, a fluent
interface DSL for the specification, optimisation and evalu-
ation of deep learning models. The fluent interface is im-
plemented through method chaining. DEFIne is embedded
in Python and is build on top of its most popular deep
learning libraries, Keras and Theano. It extends these with
common operations for data pre-processing and represen-
tation as well as visualisation of datasets and results. We
test our framework on three benchmark tasks from different
domains: heart disease diagnosis, hand-written digit recog-
nition and weather forecast generation. Results in terms
of accuracy, runtime and lines of code show that our DSL
achieves equivalent accuracy and runtime to state-of-the-art
models, while requiring only about 10 lines of code per ap-
plication.

CCS Concepts

eSoftware engineering — Reusable software; e Artificial
Intelligence — Learning;

Keywords

Domain-specific languages, deep learning

1. INTRODUCTION

Deep learning has received a lot of interest in recent years
in both academic and industrial contexts. It is increasingly
used in applications such as stock market prediction [17]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

RWDSL 17, February 04 2017, Austin, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4845-4/17/02. .. $15.00

DOL: http://dx.doi.org/10.1145/3039895.3039898

Ken Hawick
The Digital Centre
School of Engineering and
Computer Science
University of Hull, UK
k.a.hawick@hull.ac.uk

or medical imaging [23], natural language processing [42],
computer vision [18], and artificial intelligence in general
[5], in some tasks even exceeding human performance [53].

Despite the great success of deep learning and an increas-
ing number of libraries and frameworks that are available,
a substantial amount of parameter tuning is required to de-
velop an effective model for a new domain, see e.g. the ran-
dom search solution in [8]. There are few guidelines on how
many layers a deep learning model should use, or what acti-
vation, loss function and optimiser will lead to an adequate
representation of the input data, as these details depend cru-
cially on the target data [6]. Developers will typically start
from a basic set of rules of thumb and then experiment to
find the best setup.

In this paper, we present a fluent interface DSL that aims
to facilitate the process of developing deep learning models
for new domains. A fluent interface [19] is one where syntac-
tic features of the hosting language are used to good effect to
construct an DSL that is embedded in a host language and
that captures the jargon, the commands and other notions
of the requisite application domain [20, 31]. Our fluent inter-
face is implemented through method chaining as explained
in Section 4. The general idea is to abstract away from im-
plementational details and integrate standard operations in
data representation or model definition into a DSL that is
embedded in Python and built directly on top of the most
popular deep learning libraries, Keras [10] and Theano [58].
We present experiments in three different domains that are
relevant to real-world applications: heart disease diagnosis,
hand-written digit recognition and weather forecast genera-
tion. Our results in terms of accuracy, runtime and lines of
code suggest that our DSL is able to provide sufficient flex-
ibility to programmers to express the representational and
mathematical peculiarities of individual domains, while at
the same time enhancing the readability and maintainabil-
ity of code. The research contributions of this paper are:

1. A DSL framework that performs automatic data anal-
ysis, pre-processing and choice of hyper-parameters for
deep learning applications; see Section 4.

2. An evaluation in three different application domains to
demonstrate the flexibility of the DSL across datasets;
see Section 5 for the datasets and Section 6 for results.

3. A reduction in code size by up to a factor of 5 at equiv-
alent performance to recent state-of-the-art results; see
Section 6.

2. BACKGROUND

Computer programming language designers have a major
goal of helping programmers express ideas and algorithms
concisely and clearly. Even the most elegant programming
languages however sometimes falter in this goal, when pro-
grams become bigger and more complex. The standard com-
puter science “divide and conquer” approach is to abstrac-
tify ideas and component parts of a large program into a
framework or software library that can be separately de-
veloped, tested and hidden away, and invoked only when
needed. This can considerably lower the amount of source
code and hence concepts that the programmer needs to hold
on their screen or in their mind all at once and is a key to
managing large-scale complex software development [62].

Many different techniques and tools have been introduced
in modern programming languages to help this abstraction
and lowering of code complexity including: subroutines and
functions; modules and packages; and classes and objects
where data structures and operational code are combined
together to form abstract data types. While these help, ap-
plication developers are still often easily overwhelmed by
the size and sheer complexity of programs [36]. These dis-
tractions take away effort from addressing the application
problems - particularly when carrying out work in computa-
tional experiments when each experiment must be carefully
and repeatably programmed.

Different programming languages [52] have varied relative
strengths, advantages and specialities appropriate to various
sorts of applications. General-purpose programming lan-
guages often have a lot of legacy operational and idiomatic
features that can obscure the essence of an application and
sometimes make it unnecessarily complex for developers.

A relatively new technique is to create a domain-specific
programming language (DSL) [19, 63, 21, 14] that provides
the programmer with a very high-level vehicle to formulate
application ideas. The goal is for the language to focus con-
cisely on only those concepts and aspects that are directly
relevant to the particular application problem domain and
to hide away any “boiler plate” source code that is just an
artefact of the underpinning programming language. The
application domain is often a business problem using busi-
ness jargon and language or for the discussion below it could
use the scientific terminology particular to complex deep
learning systems.

A DSL can be implemented as either a full-blown language
using all the necessary compiler [2] and language builder
environment apparatus to aid the programmer [35]. How-
ever, this approach takes a lot of development effort and
requires the implementation of a lot of other apparatus such
as normal arithmetic, logic, text and string handling fea-
tures to make a seamless programming environment. This
approach is known as implementing an “external DSL” since
the DSL is external to the programming language that the
DSL system itself is implemented in. A considerably more
light-weight approach is to use the constructs of an existing
programming language to add on high-level language fea-
tures so that the DSL features are effectively superposed
onto the conventional language. This approach is known as
implementing an “internal DSL” and is the one we employ in
this paper, where we use the Python programming language
as the substrate for our deep learning DSL.

The DSL approach [43] is particularly powerful when one
can abstract a major set of operations and data structures

together into a back-end framework or library and allow
them to be invoked by the application user through appro-
priate compact programming language features in a span-
ning DSL. DSLs are particularly effective when a whole fam-
ily of problems [4] can be identified. Once a subset of special
cases have been solved, it is often feasible and efficient to in-
ductively design a DSL framework [32] that then addresses
the whole family of problems rather than continuing to solve
each individually. This is a very productive approach.

Spinellis [54] described some well known usage patterns of
DSLs but although ideas such as language-oriented program-
ming [66] have been reported in the programming literature
since 1994, the development and deployment of DSLs is still
a relatively new area with most activity reported only over
the last 15 years [63, 19, 43, 39]. Many application domains
including: simulations [25]; business applications [51]; im-
age processing [55]; database systems [41]; materials physics
problems [26], or other complex systems [27] could be sup-
ported in this manner [63, 54]. In this present paper we
develop a DSL for deep-learning applications.

DSLs are used in generating programming languages and
tools themselves [16, 59], but other areas of reported success-
ful DSL use to date include: communications and telephony
[50, 15]; real-time- embedded systems [24] and field pro-
grammable gate array device deployment applications [13];
distributed and computational grid applications [33]; and
mathematical [9] and equation-based problem formulation
[40, 28, 57]. Parallel computing [38] is also a promising area
for use of DSLs, whereby multiple versions of a program
suited to different parallel architectures could be generated
by a single DSL specification.

DSLs approaches are thus now being employed in many
application areas [12]. At the time of writing, their use is
still not completely widespread although this appears to be
accelerating as better development tools become available
and as more positive user and programmer experiences are
reported.

3. DEEP LEARNING FRAMEWORKS

Deep Learning can be approached in a number of ways.
In this section we present some background on principle ap-
proaches, followed by a explanation of how existing libraries
can be used.

3.1 Overview of deep learning models

Two aspects that are particular relevant to our present
work are artificial neural network models and more specifi-
cally - recurrent neural nets. We present some background
and terminology.

3.1.1 Artificial neural nets

An artificial neural network learns a hidden representation
h of an input x, and a mapping from h to an output y. Input
x is typically a sequence x = (z1,...,2n), and output y can
be a single value from a pre-specified set (in a classification
task), a continuous numeric value (in a regression task) or a
sequence y = (y1,...,ym). The hidden representation h is
defined as h = f(x), where f is an activation function, such
as sigmoid, tangent or relu. During training, the goal is to
minimise the loss L between the input and output:

1
L(z,y) = — > @n log ya, 1

neN

yi 2 i

1 3 [
/N
1 [

X1 X2 X1 X2

<
3

i

N
VO

Neural Network Recurrent Neural Network

Figure 1: On the left, an artificial neural network. On the
right, a recurrent neural network. Both architectures have
two inputs, two outputs and a single hidden unit.

using e.g. cross entropy as a loss function. Figure 1 (left)
shows a simple artificial neural net for illustration. It has
two input symbols, one hidden node and two outputs.

3.1.2 Recurrent neural nets

A Recurrent neural net (RNN) is a type of neural network
that learns a hidden representation h of an input sequence
x = (x1,...,2n) by learning an increasingly abstract en-
coding of the inputs. An RNN can also have an output
sequence y = (y1,...,ym), which is reconstructed from h.
Again, output y can take different forms depending on the
learning task. The hidden representation h can be found
through updates at time step t:

h; = f(htfl’xt)v (2)

where each update to h takes the context of the previous
time step into account so that dependencies are learnt across
input sequences. RNNs are suitable for tasks such as time-
series data or natural language, where one input symbol can
rely on the previous symbol(s). Figure 1 (right) shows a sim-
ple illustration of an RNN, where h is updated recursively.

Conventional update functions, such as sigmoid or tan-
gent, have been associated with the problem of vanishing or
exploding gradients [7]. A type of RNN that mitigates these
problems is the long short-term memory (LSTM) [29]. In
contrast to a conventional RNN, an LSTM has three gates,
which control the loss and addition of information for the
current “cell state”. Each gate has the same shape as the
hidden state. The “input gate” 7 is a sigmoid function which
determines how much new available information to add to
the cell state at the current time step. It first identifies for
each member of the cell state vector whether it should be
updated or not, and then chooses an update from a set of
candidates. The “forget gate” f is a sigmoid function that
determines for each member in the cell state vector whether
it should be forgotten or retained. Finally, the “output gate”
o determines what the output of the cell state should be.

In an LSTM, following [22], we update the hidden state h
at each time step t using the following steps:

iy = 0(Waize + Whihi—1 + Weici—1 + by) (3)

ft = o(Wapxs + Whphi—1 + Wepe—1 + by) (4)

¢t = frci—1 + i tanh(Waext + Whehi—1 + be) (5)

Ot = U(Wzoxt + Whohtfl + Wcoct + bo) (6)

hi = o;tanh(ct) (7)

In Equations 3 - 7, o refers to the logistic sigmoid function,
and ¢, f, o and c refer to the input gate, forget gate, output
gate and cell state vectors, respectively.

3.2 Use of existing libraries

A number of existing software libraries facilitate the de-
velopment of deep learning models. Most of them focus
on providing a mathematical framework that allows faster
development of deep learning architectures, including e.g.
efficient implementations of multi-dimensional arrays and
tensors, gradients and activation functions. All common
libraries also support code generation for CPU and GPU
processing. Perhaps the most popular deep learning library
is Theano [58], a Python library that allows users to de-
fine, optimise and evaluate mathematical expressions, and
dynamically generate C code for faster expression evalua-
tion. Torch [11] is similar to Theano in its functionality, but
is implemented in Lua and OpenMP/SEE and CUDA for
low-level operations. TensorFlow [1] is a further alternative
for Python and C++ that is becoming increasingly popular
in commercial applications. Finally, Caffe [30] is a library
for convolutional neural nets and was developed primarily
for computer vision applications.

All of the above libraries provide an extensive mathemat-
ical framework around deep learning, but do not provide
actual implementations of neural networks. Keras [10] is a
Python library that comes with a Theano and a TensorFlow
backend. It contains a well-developed library of deep learn-
ing architectures, optimisers, and support for training and
evaluating a wide range of models, illustrated with example
implementations. Keras is becoming increasingly popular
as it allows developers to compare a range of deep learn-
ing models and parameter settings in a short time frame.
Despite Keras’ comprehensiveness, the development of new
deep learning models always involves code for data pre-
processing. This includes representing data in the correct
shape anticipated by the learning algorithm, encoding and
decoding inputs and outputs, preparation of data splits for
training and testing, etc. These are relatively repetitive op-
erations that involve a lot of boilerplate code that hardly
changes from one application to the next. For example, out-
puts for binary classification tasks (see Section 5.1) are of-
ten represented as binary matrices of boolean values, while
sequence-to-sequence learning tasks (see Section 5.3) require
3-dimensional representations of their inputs and outputs.

4. A DEEP LEARNING DSL

The general idea of our DSL is to integrate common opera-
tions involved in training, optimising, evaluating and visual-
ising deep learning models into a set of high-level commands
in order to save time, avoid rewriting code, introducing bugs,
and generally providing a useable interface to deep learning.

4.1 Deep learning in DEFIne

DEFIne (DEep learning Fluent Interface language) is a
domain-specific language internal to Python, using partic-
ularly its numpy, keras and theano libraries for fast and
efficient evaluation of multi-dimensional arrays and C code
generation that is GPU-compatible. It is implemented as a

Figure 2: Basic operations involved in preparing a dataset
for deep learning (top); a list of possible parameters that
define the learning model, optimisation process and evalua-
tion (middle); and common operations involved in training
a deep learning model (bottom).

Operations on dataset
data = DataSet(X_set, Y_set)
data.representData ()
data.shuffleAndSplit ()

Parameter list for deep learner

parameters = {
modelString : MLP,
layers : 2,
batch_size : 32,
epochs : 20,

hidden_size : 50,

embedding_size 1000,
learning_rate 0.01,

momentum : 0.9,

optimiser adam ,

loss : categorical_crossentropy ,
eval_metrics [accuracy]

}

Methods for deep learner

dl = defineDL (parameters)

dl.designModel (data)

dl.compileModel ()

dl.loadWeights (weights_in_file)

dl.trainModel (data, out_file="weights.h5",
verbose=False)

fluent interface using method chaining for all methods that
refer to a common object, such as DataSet or DeepLearner.
A fluent interface [19] is one where syntactic features of the
hosting language are used to good effect to construct an
internal DSL that captures the jargon, the commands and
other notions of the requisite application domain. This ap-
proach has been widely used with the Java language [20]
employing language features such as for-each iteration [31].
The use of Python [48] as a base for fluent interface pro-
gramming is still in its infancy. Python lends itself well
to the development of a fluent interface and we show in this
section how the use of Python’s self object self-reference fea-
ture allows this to be implemented. Python is an effective
scripting language that is now quite widely used as a “glue”
like language to build libraries and frameworks for partic-
ular application domains and to embed non native Python
codes.

Our DSL implementation currently focuses on two main
object types and their methods, shown in Figure 2. All
methods were designed so as to correspond to a sequence of
actions that are typically carried out when pre-processing a
dataset and training a deep learning model. For example,
a DeepLearner object is created based on a set of param-
eters. The general model architecture is then determined
based on the parameters and the data. This model is com-
piled to contain an optimiser and loss function. Optionally,
a set of pre-trained weights can be loaded as prior knowl-

edge to the domain. Finally, the deep learner is trained and
evaluated. As each of these operations rely (to an extent)
on the previous operations, method chaining is a convenient
way to achieve more readability and make the model easy
to configure. While Figure 2 presented all operations as a
sequence, we can chain them together as shown in Figure 3.
Method chaining is implemented in Python by each method
returning the self keyword as a return value.

4.1.1 Data representation

The DataSet object receives a multi-dimensional array X
as input which contains the input features, and an array
Y which contains the output labels. Y can either be one-
dimensional (for single output scenarios) or multi-dimension-
al for sequence outputs. The method representData() will
analyse the shape of both datasets and determine the best
way to represent them, either using a 2-dimensional or a 3-
dimensional representation. It will also analyse whether the
data is numeric or symbolic, and in the latter case create
a mapping dictionary from symbols to indices. This allows
symbolic data (such as words) to be represented as numpy
arrays during training, which is much faster than lists. Fi-
nally, the shuffleAndSplitData() method, as its name sug-
gests, shuffles X and Y in unison and prepares training and
test sets.

4.1.2 Parameters and model definition

Figure 2 in the middle shows a list of parameters that a
user can set regarding the deep learning model itself (mod-
elString, layers, hidden_size, embedding size), the training
setup (batch_size, epochs), optimisation (learning rate, mo-
mentum, optimiser, loss) and evaluation (eval metrics). All
parameters except modelString are optional and will default
to pre-specified standard values if not set.

The method defineMode() receives these parameters as
input and will create a new instance of a DeepLearner. The
method designModel () will add layers to the model, an in-
put layer, a specified number of hidden layers, an output
layer and an activation. compileModel () then adds an opti-
miser, a loss function and evaluation metrics against which
to check the model’s progress. The method loadWeights ()
can optionally load pre-trained weights to the model if train-
ing is not to start from scratch. Finally, trainModel () trains
the model in a verbose on non-verbose fashion and saves its
output weights to a file.

4.2 Visualisation

Unlike other machine learning frameworks such as super-
vised, unsupervised or reinforcement learning, which nor-
mally provide some insights to their users on the rationales
for their decisions, deep learning models operate as a black-
box. They do not allow for an easy inspection of the features
and patterns that give rise to specific network decisions.
This aspect can be an important limitation in safety-critical
applications in health care or security, where it is important
to understand the network’s reasoning in order to trust its
decisions. While this is an active area of ongoing research
[45, 37], DEFIne provides a basic set of visualisation options
to shed some light on the learning process and outcomes.

Scatterplots of data point embeddings.
With a large enough data set, it is possible to find pat-
terns of statistical co-occurrence between data points in a

Figure 3: Method chaining implementing a fluent interface for preparation of a dataset and specification of a deep learner.

Operations on dataset
data = DataSet(X_set, Y_set)
data.representData () .shuffleAndSplit ()

Method chaining for deep learner

dl = defineDL (parameters).designModel (data).compileModel () .loadWeights(weights_in_file).
trainModel (data, out_file="weights.h5”, verbose=False)

Gnssibly

e [
@lear I G—@Fﬁ uﬁ{%?;;rm i 30
@oon d’pm ‘L‘&qsﬁsers @rzzle 20

L= .Ioudy |
@ Greezy 10
0

0"7

o " -10

10
15 -30
20 55

-40

‘C.Do sunny ©@9 thunderstorms OO0 southwest @@@ 20 o0 rain‘

Figure 4: Illustration of learnt word embeddings and re-
spective clusters in the weather forecast domain—words that
are close together occur in similar contexts in the data.

k-dimensional space, where k is often between 50 and 100,
but depends on the size of the data set and number of data
points. Using dimensionality reduction [61], these multi-
dimensional embeddings can then be mapped into a 2-dim-
ensional or 3-dimensional space for visualisation. Figure 4
shows an example from the weather forecast domain, where
data points correspond to words. In particular, words that
are shown together in the plot tends to occur in similar con-
texts in the data. Neural networks are generally able to learn
such embeddings from data, see e.g. [60] for an overview.

Image reconstructions.

As neural networks can generally learn a mapping from an
input to an output, it is also possible to learn to reconstruct
inputs from features. Possible applications are the genera-
tion of text that mimics the style and word sequences found
in the input data, but without being semantically controlled
[44, 56] or the reconstruction of images from learnt features.
The latter is a frequent application of autoencoders that can
be used for data compression [64]. Figure 6 shows exam-
ple reconstructions of each of the digits [0-9] in the MNIST
dataset for hand-written digit recognition, see Section 5.2.

Heat maps.
Heat maps can illustrate the strength of some input-output

Table 1: Feature set for heart disease diagnosis

Feature | Description Max
age age in years 77
sex patient’s gender (0 or 1) 1
cp chest pain type 4
trestbps | resting blood pressure 200
chol serum cholestorol 564
tbs fasting blood sugar 1
restecg resting electrocardiograph 2
thalach max heart rate achieved 202
exang exercise induced angina 1
oldpeak | ST depression induced by exercise 6.2
relative to rest
slope slope of peak exercise ST segment 3
ca no of major vessels coloured by 3
fluoroscopy
thal 3=normal, 6= fixed effect, 7
T=reversible defect
num diagnosis of heart disease (0 or 1) 1

mappings learnt during training. While it is not possible
in deep learning models to inspect the exact input features
that are most predictive of a certain output, we can vi-
sualise the model’s confidence in its output decisions. An
example of this is shown in Figure 9, where the learning
task was to learn correspondences between weather mea-
surements (the input features, shown on the left) and word
sequences “sunny”’, “cloudy”, “clear”, “mostly sunny”, ...,
“partly sunny”, etc. We can see that some mappings are
learnt with high confidence while others contain uncertainty.

5. BENCHMARKS TASKS

We evaluate our DSL on three benchmark tasks in differ-
ent areas that are relevant to real world applications of deep
learning—medical diagnosis, image recognition and data-to-
text generation.

5.1 Heart Disease Diagnosis

The Heart Disease dataset is available from the UCI Ma-
chine Learning Repository!. Table 1 shows the feature set
for this classification task. All features except male/female
were normalised, and the potential outputs were reduced to
0 (no disease present) and 1 (disease present).

The learning task is a classical classification task where we

"http://archive.ics.uci.edu/ml/
machine-learning-databases/heart-disease/ (we used
the processed Cleveland data)

Figure 5: Code implementing a neural net for heart disease
diagnosis. Note that we are able to flexibly define new op-
timisers, such as Stochastic Gradient Descent with tailored
parameters within the same framework.

Figure 7: Code implementing a neural net for hand-
written digit recognition. Note the more elaborated data
pre-processing steps required due to the MNIST data com-
ing pre-split into training and test sets.

data = DataSet(X_set, Y_set)
data.representData () .shuffleAndSplit ()

parameters = {
modelString : MLP,
layers : 1,

epochs : 200,
hidden_size
optimiser

}

defineDL (parameters) . designModel (data) .
compileModel () . trainModel (data)

6,
SGD(1r =0.32, momentum=0.73)

Figure 6: Examples of reconstructed hand-written digits
from MNIST dataset.

want to find a mapping between a set of 13 numeric input
features and one of two output features. Using our DSL, we
define the model as shown in Figure 5. As can be seen, we
are able to specify a number of learning parameters, includ-
ing the learning rate and momentum, while leaving others
unspecified. As the heart disease dataset is a comparatively
small dataset for deep learning experiments, we can include
human prior knowledge by setting the learning rate high to
start with. This will accelerate learning in comparison to
the low default learning rate of 0.01. The number of inputs
and outputs as well as their dimensionality (1D, 2D, 3D)
will be determined automatically by the DSL. The dataset
contains 303 examples, which we split into training and test
data in a 90%-10% ratio. Results in Section 6 are averaged
over 10 runs.

5.2 Hand-written Digit Recognition

The MNIST hand-written digit recognition dataset? is a
classical example of an image recognition task. Images are
represented as 28%28 pixel matrices and there are 10 discrete
output labels in the range of 0-9. Figure 6 shows sample
reconstructions of each digit. MNIST contains 60,000 train-
ing examples and 10,000 test examples. We use the original
split that the dataset is provided with. We can specify a
deep learning model for the MNIST task as shown in Figure
7. This time we need to pre-process our data in a slightly
different way as the MNIST dataset is already partitioned
into training and test sets, and we need to flatten matri-

2http://www.iro.umontreal.ca/lisa/deep/data/mnist /
mnist.pkl.gz

(X_train, Y_train), (X_test, Y_test) =
mnist.load_data ()

X_train = X_train.reshape (60000, 784)

X_test = X_test.reshape(10000, 784)

data = DataSet(X_train, Y_train)

data.Y_train = np_utils.to_categorical(
Y_train, data.outputs)

data.Y_val = np_utils.to_categorical (Y_test
, data.outputs)

parameters = {
modelString : MLP,
layers : 2,

epochs : 100,
hidden_size : 500
}

defineDL (parameters) . designModel (data) .
compileModel () . trainModel (data)

ces into (784,)-shaped arrays. As our framework is build on
Python and Keras, we can still combine our DSL with other
library operations in situations where it is needed.

5.3 Weather Forecast Generation

Our final benchmark is the generation of weather fore-
casts® from meteorological measurements. This task dif-
fers from the previous ones in that we require a sequence-
to-sequence model. We want to learn a mapping from an
input sequence x = (z1,...,zn) to an output sequence
y = (y1,-..,ym), where we assume that x and y can have
different lengths. The goal is to learn a probability distri-
bution that conditions a target sequence (i.e. a sequence
of words representing a weather forecast) on a source se-

3The dataset is available from http://cs.stanford.edu/
“pliang/papers/weather-data.zip.

‘“mostly sunny after noon” ‘\

Vi1 Vi Yitl |

1)

HDG&/
TTTE

| Xi-1 Xi Xi+1

\‘ skyCover (time=17-30,min-5,mean=6,max=21,mode=50) ‘

Figure 8: Sequence-to-sequence LSTM learning a mapping
from an input sequence x of meteorological measurements
to an output sequence y of words.

['skyCover', '5', '#min', '6', '#max', '21', '#mean’, '0', '@mode-bucket', '25']
['skyCover', '5', '#min’, '17', '#max’, '30', '#mean’, '75', '@mode-bucket’, '100']
['skyCover', '5', '#min', '17', '#max’, '30', '#mean’, '0', ‘@mede-bucket’, '25']
['skyCover', '5', '#min', '6', '#max', '21', '#mean’, '25', '@mode-bucket’, '50']
['skyCover', '5', '#min', '17', '#max’, '30', '#mean’, '0', '@mode-bucket’, '25']
['skyCover', '5', '#min’, '17', '#max’, '30', '#mean’, '75', '@mode-bucket’, '100']
['skyCover', 'S, '#min', '17", '#max’, ‘30", '#mean’, '25', '‘@mode-bucket’, '50']
['skyCover', '5', '#min', '6', '#max', '21', '#mean’, '50', '@mode-bucket’, '75']

partly

mostly sunny cloudy clear Sunny Cloudy

Figure 9: Heat map illustrating the model’s confidence in its output decisions. Dark red indicates high confidence, dark blue
indicates low confidence. In this example, the model learns to map “skyCover” measurements to word sequences.

Table 2: Feature set for weather forecast generation. Out-
put features are individual words.

Feature | Description

id a unique ID assigned to the weather record

type type of weather described, e.g. skyCover,
temperature, rainChance, etc.

time time of the measurement

min minimum value of measurement

max maximum value of measurement

mean mean value of measurement

mode alternative value of measurement, e.g. for
windDirection: south, southeast, etc.

quence (i.e. a sequence of measurements). An illustration of
a sequence-to-sequence model is shown in Figure 8, where
the hidden representation h can have multiple layers. For
our example, we choose 4 layers and an LSTM architecture.

Figure 10 shows the code for this model. We require
a recursive loop that defines one deep learning model per
weather phenomenon, e.g. skyCover, precipPotential, etc.
over 15 phenomena. This is needed because each weather
phenomenon is expressed differently, so that each model has
the same input features (measurements) but different out-
put features (words). Input features are shown in Table 2.
The sequence-to-sequence task requires a 3-dimensional rep-
resentation of both input and output sequences, which will
be determined automatically. We split our dataset of 29,528
examples into training and test instances in a 90%-10% ratio
and average results over 10 runs.

6. EVALUATION

We evaluate the implementations of our three benchmark
tasks in terms of accuracy, runtime and lines of code. We
compare accuracy achieved by our model against its cor-
responding Keras implementation as well as against state-
of-the-art results. This comparison is intended to make
sure that our DSL does not compromise performance and
achieves the same results as competing frameworks. The
comparison in terms of runtime (in seconds) will give an
indication of how much time we sacrifice for the benefit of
less / shorter code before starting the learning process. Fi-
nally, we compare the lines of code that we need to define a
model in comparison to Keras. All Keras comparisons use
its Theano backend.

Figure 10: Code implementing an LSTM that learns to
map a sequence of measurements to a sequence of words.
This example iterates through a number of models (corre-
sponding to subsets of data) and trains a model for each.

Requires a dictionary ”models” of tuples
(X, Y) per deep learner to be created.

parameters = {
modelString
layers : 4,
epochs 2000,
hidden_size : 20

}

Create a deep learner per weather task.
for key in models:
data = DataSet(models[key][0], models[key
1(1])
data.representData () .shuffleAndSplit ()
dl = defineDL (parameters).designModel (
data) .compileModel () .trainModel (data)

LSTM,

Accuracy / Similarity with gold standard.

Table 3 shows the training accuracy achieved by our mod-
els. This measure is intended to show that our DSL does not
compromise the quality of deep learning models in any way
and achieves comparable performance to an equivalent im-
plementation in Keras. This is confirmed for all three bench-
marks where small differences in the accuracy perceived are
negligible and could be down to different data splits in train-
ing and testing. The last column provides a comparison with
state of the art results (SOA). For the latter, we compare
particularly with deep learning approaches.

For the heart disease diagnosis task, we compare with [46]
who achieve 85%—a slightly better performance than our
model even when using the same learning parameters on a
neural net as us. [49] claims an accuracy of 90% but unfor-
tunately does not provide her network parameters for repli-
cability. Most other approaches use supervised learning.

For the MNIST dataset, the highest accuracy achieved
that we are aware of is 99.9% [65] with a 2-layered convolu-
tional neural net and DropConnect, a technique similar to
drop-out in neural nets. Note that MNIST is not a diffi-
cult dataset to model and is mostly used as a benchmark to

Table 3: Accuracy (in %) / BLEU*

Domain DEFIne | Keras | SOA
Heart Disease 80.7% 79.3% | 85%
Digit recognition 98.2% 98.4% | 99.9
‘Weather 0.65" 0.65" 0.52*

Table 4: Runtimes in seconds

Domain DEFIne | Keras | % improvement
Heart Disease 1.82 1.79 1.68%
Digit recognition 2.77 2.71 2.21%
Weather 26.62 45.08 -69.34%

confirm that an algorithm has been implemented correctly,
rather than pushing the state of the art.

Finally for the weather forecast experiments, we compare
our generated output against related work using the BLEU
score [47] instead of accuracy. BLEU measures the similar-
ity against a gold standard data set (the human examples in
the training data in our case) in terms of 4-grams. Language
outputs are conventionally not evaluated based on accuracy
because there can be more than one legitimate way of ex-
pressing the same thing. BLEU scores are measured in the
range of 0-1, and related work reports scores of 0.52 [3] and
0.34 [34] for the weather task. None of these methods use
deep learning, however, but semi-supervised learning from
aligned data and hypergraphs, respectively.

Runtime.

Table 4 shows runtime results (in seconds) for each of the
benchmark tasks using our DSL and its equivalent Keras
implementation. Measurements include data processing and
model definition, but not the training times of the neural
nets. All results were computed on a 2015 Macbook with
2.7GHz Intel Core i5 processor and 8GB in RAM.

We can see that our DSL is slightly slower for the heart
disease and MNIST tasks but substantially faster for the
recursive definition of weather models. The former trend
is to be expected as additional code needs to be executed
in our DSL before Keras is invoked. Invoking Keras di-
rectly is therefore expected to be faster. The latter case
(weather forecast) likely leads to a longer execution time
for Keras code because our Keras implementation does not
contain objects for datasets and deep learners. We kept our
implementation as close as possible to the Keras example
models?, which require methods for data encoding/decod-
ing, model definition and compilation, etc. to be defined for
each model separately. While this makes sense if a single
model is defined, it might well lead to slower runtime re-
sults when defining multiple models recursively. Our DSL
then saves time over this as objects (dataSet, deepLearner)
come with certain operations pre-defined.

Lines of code.

Table 5 shows a comparison of the lines of code required
by our DSL and by Keras. We can observe that between
50% and 80% of code can be hidden away in our DSL, thus
substantially reducing the lines of code required for the same

“https://github.com/fchollet /keras/tree/master/examples

Table 5: Lines of code

Domain DEFIne | Keras | % improvement

Heart Disease 9 57 533.3%

Digit recognition 13 28 115.4%

Weather 10 58 480.0%
programmes.

7. CONCLUSIONS

We have described some preliminary investigations into
the use of Python as a host language for an embedded DSL
that facilitates the implementation of deep learning code
in comparison to existing libraries, such as Keras. Our
DSL DEFIne summarises important operations for data pre-
processing and model definition for deep learning into a flu-
ent interface of common operations. This avoids the du-
plication of boilerplate code and reduces the introduction
of errors. It also includes operations for frequent visuali-
sation options. Our main research contributions are: (1) a
fluent DSL framework for automatic data analysis and pre-
processing and corresponding choice of hyper-parameters
for deep learning (Section 4), (2) an evaluation in three
different application domains to test the DSL’s flexibility
across datasets (Sections 5 and 6), and (3) the reduction
of programming code by a factor of 5 (Section 6). Results
from three benchmark tasks in heart disease diagnosis, hand-
written digit recognition and weather forecast generation are
encouraging. In terms of model accuracy, we observe that
our framework achieves equivalent performance to state-of-
the-art baselines implemented in other libraries. The trade-
off of runtime efficiency versus lowered program source code
complexity seems a well worthwhile one, as it simplifies and
compactifies the codes for the computational experiments
in deep learning that we report, as manifested by a reduced
number of lines of application domain programmer code.

8. ACKNOWLEDGMENTS

We acknowledge the VIPER high-performance computing
facility of the University of Hull and its support team.

9. REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, and et al.
TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers Principles, Techniques and Tools.
Addison-Wesley, second edition, 2007. ISBN
0-321-48681-1.

[3] G. Angeli, P. Liang, and D. Klein. A Simple
Domain-Independent Probabilistic Approach to
Generation. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
Cambridge, Massachusetts, 2010.

[4] D. Batory, C. Johnson, B. MacDonald, and D. von
Heeder. Achieving extensibility through product-lines
and domain-specific languages: A case study. ACM
Trans. Software Engineering and Methodology,
11(2):191-214, April 2002.

[5]

[18]

[19]

[20]

[21]

[22]

[23]

Y. Bengio. Learning Deep Architectures for Al.
Foundations and Trends in Machine Learning,
2(1):1-127, 2009.

Y. Bengio. Practical recommendations for
gradient-based training of deep architectures. Neural
Networks: Tricks of the Trade, 7700:437-478, 2012.
Y. Bengio, P. Simard, and P. Frasconi. Learning
long-term dependencies with gradient descent is
difficult. IEEFE Transactions on Neural Networks,
5(2):157-166, 1994.

J. Bergstra and Y. Bengio. Random search for
hyper-parameter optimization. J. Mach. Learn. Res.,
pages 281-305, 2012.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,

R. Pascanu, G. Desjardins, D. W.-F. J. Turian, and
Y. Bengio. Theano: A CPU and GPU Math
Expression Compiler. In Proceedings of the Python for
Scientific Computing Conference (SciPy) 2010,
Austin, TX, USA., June 2010.

F. Chollet. Keras. https://github.com/fchollet/keras,
2016.

R. Collobert, K. Kavukcuoglu, and C. Farabet.
Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop, 2011.

J. Cong. Overview of center for domain-specific
computing. Journal of Computer Science and
Technology, 26:632-635, 2011.

J. Cong, V. Sarkar, G. Reinman, and A. Bui.
Customizable domain-specific computing. IEEE
Design & Test of Computers, March/April:6-14, 2011.
C. Consel. Domain specific languages: What, why,
how. FElectronic Notes in Theoretical Computer
Science, 65:1, 2002.

C. Consel and L. Réveillere. A dsl paradigm for
domains of services: A study of communication
services. In Domain-Specific Program Generation,
pages 165-179, 2003.

K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and

W. Taha. Dsl implementation in metaocaml, template
haskell, and c++4. In Domain-Specific Program
Generation, pages 51-72, 2003.

X. Ding, Y. Zhang, T. Liu, and J. Duan. Deep
Learning for Event-Driven Stock Prediction. In Proc.
of the 24th Joint International Conference on
Artificial Intelligence (IJCAI), Beijing, China, 2015.
P. Druzhkov and V. Kustikova. A survey of deep
learning methods and software tools for image
classification and object detection. Pattern
Recognition and Image Analysis, 26(1):9-15, 2016.
M. Fowler. Domain-Specific Languages. Number ISBN
0-321-71294-3. Addison Wesley, 2011.

S. Freeman and N. Pryce. Evolving an embedded
domain-specific language in java. In Proc.
OOPSLA’06, pages 855-865, Portland, Oregon, USA,
22-26 October 2006.

D. Ghosh. Dsl for the uninitiated - domain-specific
languages bridge the semantic gap in programming.
Communications of the ACM, 54(7):44-50, 2011.

A. Graves. Generating Sequences With Recurrent
Neural Networks. CoRR, abs/1308.0850, 2013.

H. Greenspan, B. vanGinneken, and R. Summers.

(24]

[25]

[26]

27]

28]

29]

(30]

(31]

32]

(33]

(34]

35]

(36]

Guest Editorial Deep Learning in Medical Imaging:
Overview and Future Promise of an Exciting New
Technique. IEEE Transactions on Medical Imaging,
35(5), 2016.

K. Hammond and G. Michaelson. The design of hume:
A high-level language for the real-time embedded
systems domain. In Domain-Specific Program
Generation, pages 127-142, 2003.

K. A. Hawick. Engineering internal domain-specific
language software for lattice-based simulations. In
Proc. Int. Conf. on Software Engineering and
Applications, pages 314-321, Las Vegas, USA, 12-14
November 2012. TASTED.

K. A. Hawick. Fluent interfaces and domain-specific
languages for graph generation and network analysis
calculations. In Proc. Int. Conf. on Software
Engineering (SE’18), pages 752-759, Innsbruck,
Austria, 11-13 February 2013. TASTED.

K. A. Hawick and H. A. James. Performance,
scalability and object-orientation in discrete
graph-based simulation models. In Int. Conf. on
Modeling, Simulation and Visualization Methods
(MSV’05), pages 25-31, Las Vegas, USA, 27-30 June
2005. CSREA. ISBN 1-932415-70-X.

K. A. Hawick and D. P. Playne. Automatically
Generating Efficient Simulation Codes on GPUs from
Partial Differential Equations. Technical Report
CSTN-087, Computer Science, Massey University,
Albany, North Shore 102-904, Auckland, New Zealand,
July 2010.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735-1780, Nov. 1997.
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

J. Kabanov, M. Hunger, and R. Raudjarv. On
designing safe and flexible embedded dsls with java 5.
Science of Computer Programming, 76:970-991, 2011.
M. Karlsch. model-driven framework for domain
specific languages demonstrated on a test automation
language. Master’s thesis, Hasso-Platner-Institute of
Software Systems Engineering, Potsdam, Germany,
2007.

K. Kennedy, B. Broom, K. Cooper, J. Dongarra,

R. Fowler, D. Gannon, L. Johnsson,

J. Mellor-crummey, and L. Torczon. Telescoping
languages: A strategy for automatic generation of
scientific problem-solving systems from annotated
libraries. Journal of Parallel and Distributed
Computing, 61:1803-1826, 2001.

I. Konstas and M. Lapata. Unsupervised
Concept-to-Text Generation with Hypergraphs. In
Proc. of the North American Chapter of the
Association for Computational Linguistics (NAACL),
Montreal, Canada, 2012.

T. Kosar, N. Oliveira, M. Mernik, M. J. V. Pereira,
matej Crepinsek, D. da Cruz, and P. R. Henriques.
Comparing general-purpose and domain-specific
languages: An empirical study. Computer Science and
Information Systems, 7(2):247-264, May 2010.

M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[50]

[51]

Perry, and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In Proc. 4th Int. Symp.
on Software Metrics (METRICS’97), Albuquerque,
NM, USA, 5-7 November 1997. ISBN:0-8186-8093-8.
T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing
Neural Predictions. In Proc. of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Austin, Texas, 2016.

C. Lengauer. Program optimization in the domain of
high-performance parallelism. In Domain-Specific
Program Generation, pages 73-91, 2003.

C. Lengauer, D. Batory, C. Consel, and M. Odersky,
editors. Domain-Specific Program Generation. Number
3016 in LNCS. Springer, 2003. ISBN 3-540-22119-0.
A. Logg and G. N. Wells. Dolfin: Automated finite
element computing. ACM Trans. Math. Soft.,
37(2):1-28, April 2010.

C. A. Maddra and K. A. Hawick. Domain modelling
and language issues for family history and near-tree
graph data applications. In H. Arabnia, editor, Proc.
14th Int. Conf. Software Engineering Research and
Practice, number SER3911, pages 10-16, Las Vegas,
USA, 25-28 July 2016. WorldComp, CSREA Press.
ISBN: 1-60132-446-4.

C. Manning. Last Words: Computational Linguistics
and Deep Learning. Computational Linguistics,
41(4):701-707, 2015.

M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344, December 2005.
T. Mikolov, M. Karafidt, L. Burget, J. Cernocky, and
S. Khudanpur. Recurrent neural network based
language model. In INTERSPEECH 2010, 11th
Annual Conference of the International Speech
Communication Association, Makuhari, Chiba, Japan,
September 26-30, 2010, pages 10451048, 2010.

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu.
Recurrent Models of Visual Attention. In Proceedings
of NIPS, 2014.

E. Olaniyi, O. Oyedotun, and K. Adnan. Heart
Diseases Diagnosis Using Neural Networks
Arbitration. International Journal of Intelligent
Systems and Applications, 7 (12), 2015.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu.
BLEU: A Method for Automatic Evaluation of
Machine Translation. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics (ACL), pages 311-318. Association for
Computational Linguistics, 2001.

Python Software Foundation. The python
programming language, 2007.

U. Rani. Analysis of Heart Disease Dataset Using
Neural Network Approach. International Journal of
Data Mining & Knowledge Management Process
(IJDKP), 1 (5), 2011.

D. A. Sadilek. Prototyping and simulating
domain-specific languages for wireless sensor networks.
Technical report, Humboldt-Universitat zu Berlin,
Institute for Computer Science, 2007.

M. Schuts and J. Hooman. Industrial Application of
Domain Specific Languages Combined with Formal
Techniques. In Proc. of the 1st Workshop on Real

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

(62]

(63]

(64]

(65]

[66]

World DSLs, Barcelona, Spain, 2016.

R. W. Sebesta. Concepts of Programming Languages.
Pearson, ninth edition edition, 2009. ISBN
978-0-13-607347-5.

D. Silver, A. Huang, and et al. Mastering the game of
go with deep neural networks and tree search. Nature,
529:484-503, 2016.

D. Spinellis. Notable design patterns for
domain-specific languages. Journal of Systems and
Software, 56:91-99, 2001.

R. Steward. An Image Processing Language: External
and Shallow/Deep Embeddings. In Proc. of the 1st
Workshop on Real World DSLs, Barcelona, Spain,
2016.

I. Sutskever, J. Martens, and G. Hinton. Generating
text with recurrent neural networks. In L. Getoor and
T. Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learning
(ICML-11), pages 1017-1024. ACM, June 2011.

A. R. Terrel. From equations to code: Automated
scientific computing. Computing in Science €
Engineering, March/April:78-82, 2011.

Theano Development Team. Theano: A Python
framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May
2016.

S. Tobin-Hochstadt, V. St-Amour, R. Culpepper,

M. Flatt, and M. Felleisen. Languages as libraries. In
Proc. ACM PLDI’11, pages 132-141, San Jose,
California, 4-8 June 2011.

P. Turney and P. Pantel. From Frequency to Meaning:
Vector Space Models of Semantics. Journal of
Artificial Intelligence Research, 37:141-188, 2010.

L. van der Maaten and G. Hinton. Visualizing
High-Dimensional Data Using t-SNE. Journal of
Machine Learning Research, 9):2579-2605, 2008.

A. van Deursen and P. Klint. Little languages: little
maintenance. Journal of Software Maintenance:
Research and Practice, 10(2):75-92, 1998.

A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: an annotated bibliography.
SIGPLAN Notices, 35:26—36, June 2000.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A.
Manzagol. Extracting and Composing Robust
Features with Denoising Autoencoders. In Proceedings
of the International Conference on Machine Learning
(ICML), pages 1096-1103, 2008.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and

R. Fergus. Regularization of Neural Networks using
DropConnect. In S. Dasgupta and D. Mcallester,
editors, Proceedings of the 30th International
Conference on Machine Learning (ICML-13), volume
28 (3), pages 1058-1066. JMLR Workshop and
Conference Proceedings, May 2013.

M. Ward. Language oriented programming. Software -
Concepts and Tools, 15(4):147-161, 1994.

