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Heriberto Cuayáhuitl, Nina Dethlefs, Helen Hastie, Xingkun Liu

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, United Kingdom

{h.cuayahuitl, n.s.dethlefs, h.hastie, x.liu}@hw.ac.uk

ABSTRACT

Training a statistical surface realiser typically relies on la-
belled training data or parallel data sets, such as corpora of
paraphrases. The procedure for obtaining such data for new
domains is not only time-consuming, but it also restricts the
incorporation of new semantic slots during an interaction, i.e.
using an online learning scenario for automatically extended
domains. Here, we present an alternative approach to statisti-
cal surface realisation from unlabelled data through automatic
semantic slot labelling. The essence of our algorithm is to
cluster clauses based on a similarity function that combines
lexical and semantic information. Annotations need to be re-
liable enough to be utilised within a spoken dialogue system.
We compare different similarity functions and evaluate our
surface realiser—trained from unlabelled data—in a human
rating study. Results confirm that a surface realiser trained
from automatic slot labels can lead to outputs of comparable
quality to outputs trained from human-labelled inputs.

Index Terms— dialogue systems, semantic slot labelling,
surface realisation, unsupervised and supervised learning.

1. INTRODUCTION

Many natural language processing modules are trained on
a set of labelled examples and are then ideally expected to
also work on unseen inputs. However, while POS taggers
or parsers can often return reasonable analyses for unseen
inputs, this is not equally true for surface realisation within
Spoken Dialogue Systems (SDS). A surface realiser within
an SDS typically receives a single dialogue act as input [1],
which lacks the detailed syntactic and lexical annotation
which surface realisers from other domains can fall back on
[2]. Consequently, such kinds of realisers will fail when sud-
denly presented with an unseen input dialogue act, restricting
them to predictable and pre-trainable domains.

Our scenario is surface realisation of known and unknown
dialogue acts within a spoken dialogue system in the restau-
rant domain. A dialogue act is defined by a dialogue act type
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and slot-value pairs1. The assumption is that the system can
recognise new slots in user queries (such as a user asking
about child-friendly restaurants when this slot was not in the
training data). The system is then able to retrieve the new in-
formation from the web and dynamically extend its domain
ontology. Correspondingly, the surface realiser needs to be
re-trained from unlabelled data to produce meaningful output.
The latter will be the focus of this paper.

Several authors have recognised the need to move away
from methods that require human annotations. Instead, recent
work has explored alternative techniques that require less su-
pervision. This includes learning from trial and error [3, 4]
in situated scenarios, or learning from parallel corpora [5, 6],
databases [7, 8] or automatic slot filling [9]. While trial and
error learning is usually not an option in scenarios involv-
ing interaction with humans–because of the high number of
training episodes needed–learning from parallel corpora or
databases is restricted to domains for which such resources
exist. Therefore, while all of these approaches represent im-
portant steps towards training surface realisers with less su-
pervision, they are often not readily transferable across do-
mains. Here, we present an alternative approach to training
a surface realiser from unlabelled domain data. In essence,
our approach relies on the automatic assignment of semantic
slot types to unlabelled data. To this end, we present an algo-
rithm that takes as input a set of unlabelled sentences (which
can consist of one or more clauses), and returns a set of se-
mantically annotated clauses that can serve as training data
for our surface realiser. The algorithm clusters unlabelled in-
put clauses based on their similarity estimated as a function
of lexical and semantic similarity. The crux of our method is
therefore to find a suitable similarity metric that allows the es-
timation of semantically meaningful clusters. Based on these
clusters, clauses can be chunked into phrases and slot values
can be identified. In an automatic evaluation, both clustering
and slot value detection obtain accuracies of over 90%. In
addition, a human rating study confirms that a statistical sur-
face realiser trained from unlabelled data can achieve similar
performance to one trained from labelled data.

1We use the term ‘slot’ and ‘slot type’ interchangeably, though ‘attribute
type’ is also used in the literature. A slot type represents a set of slot values,
e.g. the slot type foodtype has slot values {chinese, japanese, mexican, ...}.



2. RELATED WORK

Recent years have seen a surge of interest in unsupervised
or weakly supervised methods that learn semantic concepts
or linguistic expressions (for natural language generation or
understanding) from unlabelled data, and move towards re-
placing the expensive/impractical labelled corpora required in
supervised learning algorithms.

Two popular approaches to do this have been to use (a)
parallel corpora [5, 6] or (b) databases [7, 8] instead of anno-
tations. For example, [10] and [11] induce semantic parsers
from parallel corpora that contain pairs of semantic forms and
natural language realisations. [1] train a dynamic Bayesian
network from semantically aligned data (a mapping from dia-
logue acts to surface realisations) produced by human annota-
tors. Other approaches follow the same approach for natural
language generation [6, 12, 13, 14]. [15] compare Hidden
Markov models and Bayesian networks for statistical surface
realisation from manually annotated data for a wayfinding in-
teractive system. In essence, these learning approaches re-
duce the problem of automatic language induction to finding
a mapping between two alternative abstract representations.

A separate direction has been to learn language through
observation or trial-and-error search in situated scenarios,
such as route direction generation. Methods explored here
include learning from experience [16, 17], learning through
observation of human behaviour [18], and learning from trial
and error [3, 4]. These approaches receive their supervision
from the real world and are therefore often only transferable
to generation contexts using simulation [19, 20, 21]. This
is due to the large number of examples required to train a
surface realisation module and the (inappropriate) amount of
feedback that would be required from human raters.

This paper goes beyond previous work in statistical sur-
face realisation. To the best of our knowledge, our method—
based on an almost unsupervised learning approach—is the
first to address the problem of training a statistical surface re-
aliser from unlabelled, automatically annotated, data.

3. METHOD FOR SEMANTIC SLOT LABELLING

The intuition behind our approach to semantic slot labelling is
to identify phrases in the input data that are semantically and
lexically similar, cluster them, and use the clusters to map
phrases onto semantic slots. Algorithm 1 shows the detailed
steps involved and Figure 1 presents an illustration. First,
unlabelled input sentences (containing the new slots or con-
cepts) are split into clauses2 based on heuristics of punctua-
tion and word connections. The output is a list of clauses–see
Step 1 in Figure 1. Second, the clauses are grouped using un-
supervised clustering as described in Section 3.1. Third, we
map all clusters found onto the slot types and definitions in

2A clause is the smallest grammatical unit that can express a complete
proposition—next below the sentence in rank—and made up of phrases.

Algorithm 1 Automatic labeller of semantic slots
1: function SLOTLABELLER(List unlabelledSentences, Dictionary slots)
2: clauses← unique clauses in unlabelledSentences
3: semanticMap← {} . cluster-slot mapping
4: labelledClauses← {} . output
5: affinityScores← similarity between clauses (xi, xj), for xi 6= xj

6: clusteredClauses← Clustering(clauses, affinityScores, |slots|)
7: for each cluster g in clusteredClauses do
8: centroid← average similarity of clauses in cluster g
9: def(si)← definition of slot si from the slots dictionary

10: s∗ = argmaxsi∈slots ClauseSimilarity(def(si), centroid),
11: where def(si) is the definition of slot si in the slots dictionary
12: semanticMap← APPEND(g, s∗)
13: end for
14: for each clause c in clusteredClauses do
15: phrases← Chunking(c)
16: phrase∗ = argmaxph∈phrases P (ph|evidence(ph))
17: slotID∗← semanticMap(cluster of clause c)
18: labelled← clause c replacing phrase∗ by slotID∗

19: labelledClauses← APPEND(labelled)
20: end for
21: return labelledClauses
22: end function

the system’s ontology. New slots are identified from incom-
ing user queries and extend the domain ontology. Their values
do not matter for our algorithm, though. The mapping in this
step is based on the similarity between the centroids of clus-
ters and the definitions of slots. These definitions are based
on phrases or keywords—see Step 3 in Figure 1. Fourth, the
clustered clauses are chunked into phrases using a shallow
parser that uses a combination of classifiers [22]. Fifth, all
phrases found in Step 4 are classified as either representing
the value of a slot or not. This is done using a Bayesian classi-
fier, which was trained on non-lexical features of known slots,
see Section 3.1.1. Last, the slot values of all slots identified in
Step 5 are replaced by their corresponding semantic slot type–
as derived from the cluster-slot mapping in the third step.

3.1. Clause grouping using unsupervised clustering

The task of our unsupervised clustering consists of partition-
ing clauses into maximally homogeneous groups, where ho-
mogeneity is measured based on numerical similarity. Here
we describe a procedure for grouping clauses into k groups
with equivalent semantics, corresponding to Step 3 in Algo-
rithm 1. We assume that the number of clusters is known, e.g.
in an interactive system the number of clusters may be defined
by the number of new concepts (slots) raised by the user. We
apply spectral clustering [23] due to its robustness to variant
cluster shapes (other clustering methods are also possible).

In spectral clustering, given a set of data points x1, ..., xn
(clauses in our case) and a pairwise affinity matrix Aij =
A(xi, xj), the task is to find a set of k clusters with a clus-
tering algorithm of preference using the data points but pro-
jected into a low-dimensional space. Such a space is obtained
according to the following procedure. First, construct the
pairwise affinity matrix Aij = ClauseSimilarity(xi, xj),



Unlabelled Sentence (input): It is located near outer 
richmond, features a great range of lunch options, 
and is a great place to enjoy a meal with kid menus. 

Step 1: Clause Splitting 
It is located near outer richmond.
It features a great range of lunch options.
It is a great place to enjoy a meal with kid menus. 

Step 2: Unsupervised Clause Clustering

It is located near 
outer richmond.

It features a 
great range of 
lunch options.

It is a great place 
to enjoy a meal 
with kid menus. 

0.266

0.330 1.253

Step 4: Clause Chunking 
[It] [is located] [near] [outer richmond].
[It] [features] [a great range] [of] [lunch options].
[It] [is] [a great place] [to enjoy] [a meal] [with] [kid menus]. 

Step 5: Probabilistic Semantic Slot Identification 
[It] [is located] [near] [outer richmond].
  |            |             |                |
0.039    0.039     0.000      0.992

[It] [features] [a great range] [of] [lunch options].
  |          |                     |              |              |
0.034  0.119            0.039      0.000      0.808

[It] [is] [a great place] [to enjoy] [a meal] [with] [kid menus].
  |      |               |                 |               |           |              |
0.042 0.005   0.070         0.001       0.065   0.000      0.817 

Step 6: Semantic Slot Labelling 
[It] [is located] [near] $nearLocation.
[It] [features] [a great range] [of] $goodForMeal.
[It] [is] [a great place] [to enjoy] [a meal] [with] $kidsAllowed. 

Labelled Clauses (output): 
It is located near $nearLocation.
It features a great range of $goodForMeal.
It is a great place to enjoy a meal with $kidsAllowed. 

Step 3: Cluster-Slot Mapping 
cluster1 : def($nearlocation)=close to a landmark location
cluster2 : def($goodformeal) = good for meal, e.g. breakfast
cluster3 : def($kidsallowed) = allowed for children 

cluster1 cluster2

cluster3

=similarity score

Fig. 1. Example sentence in the restaurant domain showing
the automatic labelling process of the proposed method. The
input to this method is sentences in raw text, and the output
is a set of clauses (simple sentences) annotated with semantic
slots. Although Algorithm 1 assumes a set of sentences as
input rather than only one sentence, this example shows only
one input sentence for illustration purposes.

Fig. 2. Sample Meteor alignments with match markers: filled
dots are exact matches, and the others are partial matches.

where the affinity between clauses xi and xj is defined by the
following cumulative scores, each score in the range [0...1]:

ClauseSimilarity(xi, xj) =MS +WRA+SSS +STS,
(1)

explained as follows. MS (Meteor Score) measures the lexi-
cal similarity between sentences (see Figure 2) calculated as

MS = (1− Pen)× Fmean, (2)

where Fmean is a weighted precision-recall metric and Pen
is a penalty that accounts for gaps and differences in word
order [24]. WRA (Word Recognition Accuracy) is the com-
plement of the well-known ‘Word Error Rate’ metric and also
measures the lexical similarity as

WRA = 1− substitutions+ deletions+ insertions

|words|
.

(3)
SSS (Semafor Semantic Score) measures the semantic sim-
ilarity between feature vectors (see Figure 3) F (xi) =
{fxi

0 , ..., fxi

N } and F (xj) = {fxj

0 , ..., f
xj

M } of clauses xi
and xj , which are extracted by the Semafor Frame-Semantic
Parser [25]. The score is then expressed as

SSS =

∑|M |
m=1

∑|N |
n=1 sim(fxi

n , f
xj
m )

|F (xi) ∩ F (xj)|
, (4)

with function sim(fx, fy) assigning 1 if semantic features
fx = fy and 0 otherwise.

Finally, STS (Semantic Textual Similarity) also measures
the semantic affinity between word sequences xi and xj as

STS ≈ simLSA(xi, xj) + 0.5 exp−αD(xi,xj), (5)

where simLSA(xi, xj) is the Latent Semantic Analysis
(LSA) between clauses, D(xi, xj) is the minimal path dis-
tance between terms within clauses derived from WordNet
relations, and α is a weighting factor as described in [26]. The
result of this first step is a matrix of affinity scores A(xi, xj).
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Fig. 3. Sample Semafor features within a clause.
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Fig. 4. Sample clustered clauses in 3D.

As a second step in spectral clustering, we compute the
Laplacian matrix L = D−A, whereD is the diagonal matrix
with element (i, i) being the sum of row i in matrix A.

Third, we compute the first k eigenvectors V = {v1, ..., vk}
of the Laplacian matrix L. In linear algebra, an eigenvector
v of matrix L satisfies the property Lv = λv, where λ is
a constant called eigenvalue. Let yi ∈ Rk be the vector
corresponding to the i-th row of eigenvectors V .

Last, we cluster the data points yi into k clusters. We used
the K-means algorithm with the Manhattan distance defined
by d(p, q) =

∑n
i=1 |pi − qi|, where p and q are eigenvectors.

An example result of clustering a set of data points given the
eigen-decomposition above, is illustrated in Figure 4 based on
three slots assumed to be unknown (i.e., k = 3).

3.1.1. Semantic Slot Detection using Supervised Learning

Step 5 in Algorithm 1 identifies those phrases in the data that
represent slots (in contrast to non-slot phrases). To do this,
we use a Bayes net that was trained on features of known
slots. The joint probability distribution for random variables
(task-independent linguistic features in our case) Y is de-
fined by P (Y ) =

∏
i P (Yi|pa(Yi)), where pa(.) denotes the

set of parent random variables, and every variable is associ-
ated with a conditional probability distribution P (Yi|pa(Yi)).
The following tasks are involved in the creation of our Bayes
net: (1) structure learning involves constructing the depen-

dencies of random variables based on the K2 algorithm [27];
and (2) parameter learning involves the estimation of condi-
tional discrete probability distributions from data, where we
use maximum likelihood estimation with smoothing. Once
the Bayes net has been trained, we use the junction tree al-
gorithm [28] for probabilistic inference, i.e., to compute the
probabilities of phrases being semantic slots within a clause.
The phrase with the highest probability is selected according
to argmaxph∈Phrases P (ph|e(ph)), where the evidence of
phrase ph is defined by e(ph) = {fi=vali} with features fi.

Our Bayes net used the following features (binary ex-
cept for the first two features): previous and next Part-Of-
Speech (POS) tags [29], hasVerb, hasNoun, hasPronoun,
hasAdverb, hasAdjective, hasPreposition, hasConjunction,
phraseSize (small:|words| ≤ 4, large:|words|>4), isStop-
Word, tf-idf level (low≤5, high>5), and label (yes, no).
The last feature was used to ask probabilistic queries, e.g.
‘What is the probability of this phrase being a semantic
slot?’, and the remaining variables were used as evidence
of the phrase at hand. An example probabilistic query to
the trained Bayes net to determine how likely the phrase
“Union Square” is to be a semantic slot is as follows:
Pr(label = yes|e(“Union Square”)) = 0.778, where
evidence e includes feature-values such as prevPOS=TO,
nextPOS=END, hasNoun=true, phraseSize=large, isStop-
Word=false. These types of queries form the probability
distribution of phrases (being semantic slots) in a clause. See
Section 4.3 for classification accuracy in our domain.

4. EXPERIMENTS AND RESULTS

We describe two evaluations of our proposed method for au-
tomatic labelling of semantic slots, and its impact on a statisti-
cal surface realiser. First, we present an automatic evaluation
to reveal the accuracy of clause clustering and semantic slot
detection. Second, a user evaluation is presented to assess
how humans perceive sentence generation for dialogue sys-
tems from automatically labelled data compared with manu-
ally labelled data.

4.1. The Data

Our domain is restaurants, where we assume a set of the se-
mantic slots to be known (venuename, food type, area, and
pricerange), and a set of slots to be unknown (allowedforkids,
goodformeal, and near location). The latter are the ones that
require automatic annotation. The corpus used for unsuper-
vised clustering included 200 human-written sentences, each
sentence containing 3 slots (which resulted in 600 clauses
used for clustering). The unlabelled sentences served as in-
put to Algorithm 1. In a second step, two independent hu-
man annotators labelled the data so that it could serve as a
gold standard for our automatic labellings. The annotators
discussed all diverging annotations and agreed on one. An



Metric Accuracy (Purity)
Lexical Information (MS+WRA) 0.683
Semantic Information (SSS+STS) 0.842
Lexical+Semantic Information 0.960

Table 1. Experimental results in sentence clustering compar-
ing lexical and semantic information, showing that its combi-
nation finds better clusters than individual metrics in isolation.

example sentence is provided in Figure 1. The corpus used
for supervised learning is derived from 500 restaurant recom-
mendations (from www.list.co.uk) containing the fol-
lowing slots: venuename, foodtype, area, and pricerange. For
details on the corpus and annotations please see [30].

4.2. Results of Unsupervised Clause Clustering

In terms of unsupervised learning, we have applied the spec-
tral clustering technique described in Section 3.1. It heavily
relies on a set of numerical distances between clauses pro-
vided by four task-independent metrics: Meteor Score (MS),
Word Recognition Accuracy (WRA), Semafor Semantic
Score (SSS), and Semantic Textual Similarity (STS). These
metrics were used because they provide affinities of lexical
and semantic information. The motivation for using multiple
metrics instead of a single metric is due to the lack of a task-
independent metric providing meaningful distance scores
between clauses. We compared the clustering accuracy (also
referred to as ‘purity’) of lexical information (MS+WRA),
semantic information (SSS+STS), and lexical plus semantic
information (MS+WRA+SSS+STS), see Table 1. Purity is
computed as Purity(C, S) = 1

N

∑
kmaxj |ck ∩ sj |, where

C = {ck} is the set of clusters, S = {sj} is the set of slots,
and N is the number of clauses. While bad clusterings have
purity values close to 0, good clusterings have purity values
close to 1. It can be observed that the combination of lexical
and semantic information achieves the best results. These
results represent an improvement over the method proposed
by [31], which is limited to only semantic information.

4.3. Results of Supervised Semantic Slot Detection

In terms of supervised learning, we trained a Bayes net
(see Section 3.1.1) from restaurant recommendations (from
www.list.co.uk) including known slots based on 2900 train-
ing instances. This data set was derived from labelled data
of known slots (venuename, foodtype, area, pricerange). An
evaluation on held-out data from known slots on a 10-fold
cross validation reported a classification accuracy of 94.9%.
To test the Bayes net’s accuracy on unseen slots, we tested
it on data containing our unknown slots (allowedforkids,
goodformeal, and near location). This attained a precision
P=0.672, recall R=0.955, F-measure F=2 (P×RP+R )=0.789,
and accuracy A=(true positives + true negatives)/all=0.912.

Human Labelled Unlabelled
Understanding 4.32∗±0.92 4.06±0.88 4.03±0.91
Phrasing 3.75∗±1.19 3.13±1.20 3.03±1.27
Naturalness 3.86∗±1.09 3.41±1.08 3.33±1.18

Table 2. Average results from human ratings comparing ut-
terances trained from manual and automatic slot labelling (no
significant difference), contrasted with human written sen-
tences (significant at p<0.003). ∗Significance based on a two-
tailed Wilcoxon-Signed Rank Test, ± means std. deviation.

4.4. User Evaluation

We evaluated the output quality of a surface realiser trained
from automatic slot labelling and compare it with a surface re-
aliser trained from human annotations. As a first step, we use
the output of our proposed method (a list of labelled clauses)
for extending an existing corpus of labelled sentences [30],
which resulted in 1300 sentences with different combinations
of known slots (venuename, foodtype, area, pricerange) and
unknown slots (allowedforkids, goodformeal, and near lo-
cation). The former were manually labelled and the latter
were automatically labelled. This extended corpus of labelled
sentences was used to train a Conditional Random Field
(CRF) based surface realiser for extended domains (i.e., for
the known and unknown slots). In total the surface realiser
can handle 7 slots, 4 referred to as ‘known’ and 3 referred to
as ‘unknown’. In addition, a second CRF trained only from
human annotations (see Section 4.1 for the gold standard)
was used as a baseline / upper-bound system. For details on
the surface realiser, please see [30]. 50 sentences were gen-
erated for each surface realiser and rated by crowd-sourced
users. An example sentence is “This venue is called Jasmine
Garden. It is close to the Duboce Triangle, and allows you to
enjoy your meal with children.”

We ran a human rating study using crowdsourcing3. 202
users took part in our rating study and rated altogether 1908
utterances (containing repetitions) for their understandability,
phrasing and naturalness. For understandability, the question
we asked them was “Is this utterance understandable, i.e. is its
meaning clear?”; for phrasing, the question was “Is this utter-
ance well phrased?”; and for naturalness it was “Is this utter-
ance natural, i.e. could it have been produced by a human?”.
Table 2 shows the mean ratings on 1-5 Likert scales, where 1
represents the worst and 5 the best. For comparison, the table
also shows ratings for human-written sentences. Two results
can be observed. First, none of our trained surface realisers
was rated as well as the human-written sentences. Secondly,
the outputs generated from automatic labels were rated very
similarly to the outputs generated from human labels. There
is no statistically significant difference between both sets of
outputs according to a two-tailed Wilcoxon Signed-Rank test.

3https://crowdflower.com/

www.list.co.uk
https://crowdflower.com/


5. CONCLUSION AND FUTURE WORK

Previous work has treated statistical surface realisation mainly
as a supervised learning problem, requiring labelled data. In
this paper, we have addressed the problem of training a sta-
tistical surface realiser from unlabelled data, using automatic
slot labelling. Our method uses unsupervised clustering to
identify sentences with similar semantics based on a similar-
ity function taking lexical and semantic features into account.
We have applied spectral clustering due to its robustness to
variant cluster shapes. In a second step, we have applied a
Bayes net to distinguish phrases that represented semantic
slots from those that do not. The automatically labelled data
was used to train an existing surface realiser [30], which uses
conditional random fields to generate outputs from input dia-
logue acts in the restaurant domain. An automatic evaluation
showed over 90% of accuracy in identifying clusters and iden-
tifying slots. In addition, a human rating study compared the
quality of utterances generated from automatically labelled
data against utterances generated from human-labelled data.
There was no significant difference between the two variants.
This suggests that our automatic semantic slot labels were
accurate enough to compete with human-labelled data.

Although we have extended this work with semi-supervised
learning [32], in the future we aim to (1) evaluate the pro-
posed method with additional unknown slots, data sets and
algorithms; (2) compare the proposed clause similarity met-
ric with other metrics to assess generalisation in growing
domains and across domains; (3) automatically retrieve train-
ing data for our method from the web (rather than relying on
non-automatic inputs), and (4) finally, perform an extrinsic
evaluation with an end-to-end spoken dialogue system [33].
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